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PREFACE

The preparation of this Solutions Manual as & supplement to the 2001 edition of Electrockemical
Methods: Frnd: is and Applicati authored by Allen ). Bard and Larry R Faulkner, has
been & year-leng undertaking and adventure. We extend sincere thanks to A.J. Bard, P.H. He, D.O.
Wipf, and P. Vanysek for many enlightening discussiens as this manual was being prepared. We
are grateful for D.C. Dunwoody's assistance with TiEX. We also extend thanks te Jennifer Yee and

Linda Heydt at Wiley for facilitating this project.

We welcome comments and queries on our approach to the problems. These may be addressed
o Cynthia G. Zoski (checgz@panther.gsu.edu} and Johna Leddy (jleddy@blue weeg uiowa.edu).
Additional information and updates may also be found at www.wiley.com/college/bard.

Cynthia G. Zoski
Johna Leddy
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1 INTRODUCTION AND OVERVIEW

OF ELECTRODE PROCESSES

Problem 1.1 (a). In approaching this kind of problem, it is useful to list all the couples in Table
.1 that are relevant to the system.

B vi. NHE (V) Reaction
1.235 O + 407 +de = H;0
1.188 P+ +2e = Bt
0.340 Cu* +2e=Cu
0.15% Cu? +e = Cut
0.000 FHY 4 2e w: Hy
-0.4025 Cd*H +2¢ = Cd

Altematively, a praphical representanion may prove useful, Here, the standard or formal potentials
for each redox couple are plotted on a potential axas. The species present in selution are underlined.
Note the reduced half of the couple 1s noted toward more negative potentials. The vertical line
indigates the approximate potential range where both halves of the redox couple can exist. For
glectrode potentials positive of a given hine, the oxidized half of the couple is stable at the electrode
surface; for clectrode potentials negative of the line, the reduced form is stable. Note thatforn = 1,
electrode potentials within 118 mV of E° require no less than 1% of either the oxidized or reduced
halves of the couple as given by log {% =-n (E - EO} /0.059,

PE| Pt ' cu’
je24]= Hel cultlcu IH: cd® cd
Rest Potential
) Rapge !
1.4 049 0.4 -0.1 -0.8
E {V vs. NHE)

The compasition of the sysiem dictates that the Test (zero current) potential be more positive than
Egu““f’Cu and more negative than EGO:;‘H,O or Eﬂpﬁm, i.e., between about 0.34 Vand 12 V
vs. NHE. Graphically, this is apparent because this is the voltage range over which the oxidized
(Cu?*) and reduced species (Pt or Hy0) present in the solution are most adjacent on the graph.
This defines a zene of stability set by the oxtdized and reduced species. (Note that the cell would
not be at equilibrium it oxidized and reduced species of two or more couples were present such that
they were on the outer sides of the lines. For example, if the selution conteined Cu and Oy, there
would be a thermodynamic driving force for these species to react spontaneously to form water
and Cu®* ) Here, the potential is not well defined in a thermodynamic sense; the electrode is not
well poised, because no couple has both oxidized and reduced forms present. Calculation of the
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equilibrium potential by the Nernst equation cannot be made.

Current will flow when the potential s moved negatively from the rest potential 0.340 V (or 0.340+
(—0.2412) = (.099 V vs. 8CE) so that Cu®" is reduced at the electrode surface first,

Cut + 28 = C (first reduction, == 0.1 V vs. SCE}

A positive movement from the rest potential first causes significant current flow when platinum and
waler are oxidized.

Pt =2 Pt2+ + 2¢ (first oxidations, * 1.0 ¥ vs. SCE)

2120 = 0p +4H* + 4¢

Actually, Pt would form a thin oxide film, then it would stabilize, and only the oxygen evolution
reaction would ocenr, The current-potential curve would look like the following.

- Cutt + 2e=Cu
T T
1.0 0 -0.5

ZH,0 = 0, + 4H* + 4e

E, V¥ vs. SCE
Problem 1.3 The impertant reactions are
Fe?* +e = Fe?+ E°=0.771 V vs. NHE
S+ + 2¢ = §n?* EP=0.15 V vs. NHE

(a)- From (1.4.9) and 1 = 1,4; = nFAmpCy = 530 pA.

{b). Becausc the concentration of stannic ion is half that of ferric jon but n = 2, and the mass
transfer cocflicients of the two ions are the same, the limiting current for the reduction of $n%+ is
algo 580 wA. The halfwave potential, Ey 5, for the ferie reduction is near E° =0.77 ¥ vs. NHE,
whereas that for the reduction of stannic jon is near 0.15 ¥ vs. SCE. The ¢ — E curve is as follows:
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16 ifmA
H +2e Hy— )

12
S0+ 2e St —

08

i

5 0.4
Fe' te~Fe'

S o
](2 1.0 0.8 06 04 0.2 0‘? 42 04
— 2H,0- Oy + 4H + de

0.4
E/V vs NHE

Problem 1.5 From equation (1.2.10),

-t
q=ECiA {l — exp (m)] [$9]

Area appears because Cg4 1s expressed as capacitance per unit ares. The time constant 7 is R,Cy A.

R0

At complets charging (¢ — 50), g = E7/ R, At 95% 0f gic, time ypz, is set by

@

ogstr = BT

Tk [1 —exp (fi:’i')] 3)

‘This expression is rearranged to J9gy, = 37 8t 95% completeness. For the specified conditions,

R,/ [ 1] 10] 100
T/ue [ 2] 20] 200
3r/us | 6] 60 [ 600

Problem 14 (w). From equations {1.4.9) and {1.4.17) for the limiting currents, 7—“‘:5: = %Fﬁ:‘—;g‘: =
A4 = 167 or 20 = 1137%51 = 0.833. From equation (1.4.15), By = BY — B n e
—0.498 V vs. NHE.
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Problem 1.9 The relationships linking current and concentration in the steady-state treatment of
mass transfer are equaticns (1.4.6) and (1.4.7).

i =nfAmG[CH — Colz = 0}] (0]

i = nFAmg|Cpiz =0) — C}) @

Because Cp, = 0, the first of these is
i= - nFAMeCo(z = 0) &}

Because £ does not exist in the bulk, no cathodic current can flow. All current goes to oxadize R
The limiting rate of oxidation is found when Cr(x = 0] = 0, hence the limiting current is

o= —AFAMRCH 4
The system is Teversible, hence,

RT Colz=0)

— at —_ —_—
E=F +nFlnCR[J:=U) (5)
From equation (3),
Cole =)= ——— 8
ole = )_nFAmg 6)
Trom equations {2} and {4},
L Lt Ua
Cale=0) = S @
Substitation of (6) and (7) into (5} gives
- &L\ jree] BEL L -8
=B+ nk In [mo] + nF In L' — 'i;l.,] ®

Note that this result is the special case of (1.4.20) ford;, = 0. When ¢ = & 4/2, the last term in (8}
iszeroand E = Eyo.

RT m
_ g £
Eyp=E¥+ 5l 2 ©

The ¢ — E curve, plotted from equation (8), resembles the following:
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Problem 1.11  {a). Starting with expression (1 4.16),
E = By + &ln [

One solves for /¢, as follows.

B (E — Bipe) = n [47]

oxp (B0 (B - Bl = 4 =% -1

& =1 +exp 5 (B - Eypr)]

t={l+ew [ (E-EL))
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2 POTENTIALS AND THERMO

DYNAMICS OF CELLS

Problem 2.1 Accarding te the comments on page 2 of the text, the e¢ll potential is n measure of
ihe energy available to drive charge externally between the two electrodes; thus, the cell potentiat
is positive. The standard emf is Ey,, = B0 — Efeﬂ, according to equation {2.1.41); under
standard conditions, the emf yields the standard free encrgy as AG? = —nFEZ, ,, according to
equation (2.1.25). If AGY < 0, the reaction is spontaneous (galvanic); if AG® > 0, the reaction
tmust be driven by an external power source and the reaction is electrolytic.

{a). Any reaction pair with the form
Half Reactions: O+ fHy0 +ne == R+ gOH™

R+ {HzQ = O +gH" +ne

has the net sum

‘Net Reactions: HyQO = H* + OH™

For example:

Half Reactions: 2Hs0 + 2¢ = Hp + 20H~ Ef =_0.828 V vs. NHE
2H* +2e=H, E%=0.000 V vs. NHE

Net Reaction: H:0=H* +0H™

Cell: Pt/Hala = 1) HCKa = 1) # NaCH{a = 1)/ Ha(e = 1}/ Pt

Right elecirode at Egi,ofﬂq = 0.828Y vs. NHE
Left electrode at EY,. y, =0.600 V vs. NHE

The right electrode is negative. The cell potential is 0.828 V. From equation {2.141), B, =
£, ot — Blopy = -0.828 V, so the cell must be operated electrolytically in carrying out the reaction.

(e).

Helf Reactions: BQ+ 2H* +2e = HaQ E0=0.6992 V vs. NHE
2Ce™ = 2Ce** + 2 EY=1.72V vs. NHE

Net Reactions: 206 + BQ + 2HY = 20 + HaQ

Cell: Pi!Celt(a=1),Cefta=1)#

BQ{a = 1), H3Q(a = 1), H¥(a = 1), SO} fa = 1) /Pt

Right electrode at f g, = 0.6992 V vs. NHE



= \RRANAT. EFFEHSO'OR . net

Left electrode at B,uu cov = 172 V vs. NHE

Right electrode is negative. The cell potential is 1.021 V. From equation (2.1.41), EZ, = B, —
Eféﬂ = -1.021 V, so the cell is electralytic for the reaction as written. Note that Ce** is among the
mast potent oxidants available in agueous solutions.

Problem 2,2 Standard potentials must be converted to free energies to caleulate the correct stan-
dard potentials, Alternatively, tabulated values of the free energies can be used to calculate the
standard potentials for the net haif-cell reaction

The approach is to convert the half reaction of mterest o a full reaction through combination
with an appropriate half reaction such as the kydrogen reduction half reaction.

H* ve= %H‘Z(E]

The free energy change is then calculated for the resulting full reaction, which in turn yields Efm

and the standard potential, E°. The free energies needed to solve this problem are tabulated as
follows.

Species AG?. (keal/mol} AG’?} (kJ/mol)

CO (@) 3281 BEFE;
CQg (g} 9426 1946
CH, (g} 1214 -50.82
Hz0 () -56.69 2373
CyH, () 50.00 2093
CaHg (g) -7.86 329
Hy (g) 0.00 0.00

(a). The reaction
COyy + HgOy = Oy + 2HY+ 26

is added to the hydrogen reduction hall reaction to yield
COrgy + Huyy = COg) + Hygy)

The standard free energy change for this reaction AG” is

AG® = AGco, + G4, — AG oo — A0 (1)
—39446 - 000  (--137.3 - 237.3) = —20.0 kJ/mal

Recall, the relationship between standard potential and free energy.

AG®
B=-"F o)}
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Forn =2, Edp = — Sgesiclimel — 0104V where ES, = By 1, — B, 00 o

BS0,00 = Efrejar, = Bren =000V — 0104V = —0.104V vs, NHE @

Problem 2.4 (a). Ag/ AgCl/K*, CI—(1M) / Hg2Clp / He

HegzClp + 2¢ = 2Hg + 2C1— 026816V =E®

2% (AgCl+e = Ag+Cl1™) -(0.2223Y) =E}

TigaClz + ZAg + IC1- == 2Hg + 2CT + JAgCI 0439V = Eﬁ,,,

HgaClp + 2Ag = 2Hg + 2AgCl AG < 0; reaction is spontaneous

(d). Pt/ Hy(1 atm) / Na*, OH-(0.) M} # Na*t, OH— (6.1 M)/ Oz 0.2 atm) / P

0z + 2H0 + de = 40H~ Q401 vV =EP
2x(2HpO+2e=H, +20H")  -{0.828V) =E?
2ZH; + Oz = JH;0 139V =

Ey = 0401 + 252 log iy = 0401+ 0.0148 log (23 = 0.450 v

B = —0.828 + W8 log p—dpry = —0.828 + 0.0296 log by = ~0.769 V
Eyyn = By ~ E; = 1.219 V (spontancous)

Alternatively, for the reaction as written,

B = 1229 — 388 log gl = 1.200 - 0.0148log sl = 1.219V

Note that this eell reaction is the same as that in () and that the pressures of the gaseous reactants
are also the same. Thus, B, must be identical. However, the change in pH in the electrolyte does
shift the potentials of the hydrogen and oxygen electrodes o more negative vaiues by 59 mV per
unit rise in pEL. In practical terms, pH sets the accessible potentials or “solvent window’ in aqueous
solutions,

Problem 2.6 The reaction of mterest is PbS0, = Pb?* + S0~

PbSO, +2¢ = Pb + 503~ 03508V = Ef
~Ph?t +2¢ = Pb) {0.1251V) =E}
PhSOy = Pu™¥ + 505 02254V =EY,
Cell: Pb/Pb?* (o = 1), NOz(a = 1)/ Na*{a = 1), SO}~ (s = 1) / PbSO4 /Pb

The cell reaction is the solubility equilibrium written above. From equations (2.1.41) and (2.1.29),

Ergn = % = Eyso,p = Fbysppy = —0.3505 V — (0.1261 V) = —0.2264 V(1)
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nFEL.

InKp = =20 = 175 0 Kop = 240 1978 2)

Problem 2.8 The cell reaction is
Helf-Reactions: AgCl+e(Cu’) = Ag +C1™
Fet +e(Cu) = Fe?+
Net Reactions:  AgCl+Fe?™ + g{Cu”) =Ag + C1™ + Fe3* + e(Cu)

Beoause M 15 not involved in the overall reaction, it cannot affect the cell potential, which re-
flects AGP for this reaction. One can consider the vell at open cireuit in terms of the species at
equilibrium across various phase boundaries,

B =g n
e = B + B e ‘
RGN = - @ :
B e = e @
e = 2 )
Adding equations (2) to (4) gives
Bhrars + BAIS + B40E + B9 = B + Bl + BT+ BY ®

Substituting from (1) and (3) and recognizing that

_AgCL | —AgOl _ _AgCl
BaSe TR = Eaden 4]

gives
. LARCt | —Ou _ = _Ag | - _
Bpess + BTG + BT = fhreos + B+ By + B ®
Expansion gives
#a + RT M al, +2F6" + 10098 4 00— pgOv

= iy + RTIna} o, +3F9° + g09 + 4% + RTInay_ — Fg' 4 W00 — Fgfs
®)
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Rearrangement provides

Ou'

04gCt UAg
on o Ber T = il -0 . RT o
= E= S + 5l (10}

3
Epea+ B~

No terms describing encrgies in M appear, thus E does not depend on M. The term 5 appeared
in equations (1 and (2} above, dut they cancelled out. District values of the interfacial potential
difference, ¢* — ¢™, would arise for various species Af, but the variations would be exactly
compensated by variations in ¢ — ¢,

Problem 2,10  Consistent with the comments at the start of Problem 2.2, a sound thermodynamic
development of standard potentials (E") for half-cell reactions must proceed through free energy
calculations, not standard potentials.

(). First, convert the two standard half-cell potentials into a net reaction by combining the reac-
tions with the F*/H; half-cell reaction.

HY +e= (g

Thus,
Cu't+2e=Cu 0330V =E°
2 + e = 3Ha(g)) _-eos0v) =E
CuF+Hy = Cu+t 2HT 0340V :Eé,’,,,:,
AGY = —nFEL,, = —2FEL
and
Cu?t +I~ +e= Cul 086V =EL
S(HY + e = JHalg) -0.00V) =g
Cu?T + 1 + {Hz = Cul +HY 08V =E, .,

BGY= AP, = —1FED.
Then. note that subtracting the second reaction from the first yields

Cul + JH, = Cu+ - +H*

This has a standard free energy of
= AGY - AGE = —F (2F%n, - BL. ) {1
This is a single electron transfer reaction, s¢ the emf for this reaction is

= 7§ = 2E? g = =018 ¥ @)

ren ram.l
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Finally, the standard potential for the half reaction is found as

Cul+e=Cu+1" = E?
(Y + & = AHu(g) 000V) =EP
Cul+ A = Cu+ T +HTY DIV =El.5

which is satisfied for the standard potential of the half reaction, £C = EO, o + Ef = ~0.18 V.

v
Generalized Form: The above processes can be genieralized and simplified because the reference
half reaction of H /Hg and — " cancel out. For the addition or subtraction of the standard potentials
(E7 and E2) of two half reactions to yield the standard potential (£5) of 4 third half reaction,

B9+ nyES
R @
3

where the reactions have ny, nz, and ng clectrons, respectively. Note that in all the previous

problems in this Chaprer, the special case applies where reactions are combined to yield a net

equation with 1o explicit elecrons. Then, ;1 = nz = ny, and equation (3) reduces two Eg =
J20 2
1 2

(b} This example is done using the lized expression, eq (3). The half reactions are
combined by subtraction of kxn2 frem Rxnl. Note, that the caleulations yield a half reaction (i.e.,
there are explicit electrons in the final reaction) and the generalized form is required.

O+ 4H* + de = 2He O El=1229V

-(HpQz + 2H™ +2e = 21,0) EL = {1763 V)
0o+ 2HT +2e = Hy02 Ed
where

4ED - 2B 4x1.220-2x1.763

== 7

= 0,695V @

Problem 2.12  The total charge passed through the cell consists of the twa components represent-
ing ioni¢ (gien) and electronic (g} conduction,

§ = Qion T qul [S]

The giom cotmponent is due to a faradaic process (i¢., reduction of silver) and can be calculated as
follows for quon = NF » moles where here n = 1,

L12g-100g
= ! Y ————————— = |
G =1 96485 Cfomol x S O = 10783.C &)
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The total charge passed is ¢ = .24 x 6003 = 120C. Thus,

g = 120 C — 107.83 C = 1267 ¢ 3
and
G 12870
Pl =0.106 )

gives the fraction of the current passing through the cell due to electronic conduction.

Problem 2.14  (a). Type 2, common anion. From equation (2.3.40),

__RT Ay
E; = = In Aron ()
From equation {2.3.14) and using Table 2.3.2,
ANact = ANar + g = 5011+ 76.34 = 126.45 2)

Apct = Aps +Acr = 34982+ 76.34 = 426.16

Substitution leads to £; = 31.2 mV. The junction is dominated by the very mobile H¥, which
tends to place a positive net charge in the nght hand phase.

{c). Type 3. From the Hendersen equation (2.3.39), E; = 46.2 mV. The junction is dominated
by mobile OH™ which deposits a net negative charge on the lefi- hand phase. The situation is
apalogous to (b), but OH™ is not as mobile as H™, hence £; is lower here than in (b).

Problem 2,16 By analogy to equation (2.4.20), the cell potential in each case iz
RT
E = constant + - In (ﬂNa‘r +k§,a:..ﬂu) (1)

where i is the interferant. The cell potential is always the value expected for ay.+ = 107 M in
the absence of interference. For a 10% errer,

tnet =1 x 1077 01 % 10 =0x 1074 M @)

Thus, K. .o must be 1 x 10-% M. The activities that would eause this error are
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NH,;r :
Agt:

H*:

axe = FEEL = Lt oM

Fiies | 1x10=¢
Pypr = 5 = S = 10M
Nat mHF
uw:ﬁ Lt =33x10""M
am_;;:w* el = | x 1078 M
o
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3 KINETICS OF ELECTRODE

REACTIONS

Problem 3.1 (a). From equation (3.4.6),

o = nFROCYX ™ CY = 9.65 x 1073 pA/em? o

Problem 3.3 (2). All voltages are relative to NHE.

N Ini Gn .
ua A) i’A
[0.96 00358 |
96 00358 |
96 00358 |
.96 20.0358 |
[ 096468 | -0.036
0362 |
£0.0370 |
0.0350 |
X 0.044
BX 05 [ 0.057:
[-L 5. 054 | 0.
[0.95_ |0 417 | 0.
090 |0 68202 | 0.
0385 [0 45992 | 0. 05
(080 |- 24697 | L.
075 | o
290 Tx In |i| (in A)
-0.65 ~
060 |-
o .
.
0. 0
0. I
0. i
0. i
025 X
0,20 X
015 2.
2010 0.
[0.05 £.005 T
0.00 - 0.5




Chapter 3 Wcﬁﬂﬂh'ﬂo k N et

Problem 3.5 (a). Neglecting mass transfer effects, the true current is given by equation (3.4.11).
The approximate current is given by equation (3.4.12). Thus, the relative error ¢ is

¢ = lapproz ~lirue _ lopproz _y _ —fn o

Ttrue irme  expl—afn]—exp[(1—a)fn

Relative Error for Linear ¢ — 7 Characteristic

n,mV g %fora=050 ¢, % fora=0.10

10 -0.63 -15.0
20 -2.5 -28.6
50 -142 -60.6
10 -0.63 -16.1
-20 <25 -33.1
-50 -14.2 -86.9

Problem 3.8 (a). The rate expression for the first order rate reaction is

d
40— —kynat) )

For an initial concentration of 74,0, this is solved by separation of variables as

na(t)

—k,/au / ) = Al =1nZL:A—(?=~kft o

or
n4(t) = nagexp[~kst] ®

At time ¢, some fraction of the molecules dn 4 decay. By averaging the times over all molecules
and normalizing by n.4 9, the average lifetime is determined.

}Votdn A(t)
0
=L 4
T map @
From (1) and (3) above,
dna(t) = —kna(t)dt = —kgnagexp [—kstldt ®)

16
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o
[ —tkgnagexp[—kytldt 3
0

= =k [t —kst)dt 6;
T ™ fa/ exp [—kst] ©

This is integrated by parts where fudv = uv — fvdu. Let u = tand dv = exp [—kyt]dt, such

that du = dtand v = 1’&1’_—"&1

4
It

-k,jtexp[_k,th= & (lt—ei‘l;cﬂﬂ[q -/Mw) @
0 t Q0 4

exp [—kqt] 1
—/exp [—kstjdt = ~ =
4 ke ol kr

(b). Consider a zone of thickness d from the electrode surface in which all the molecules can be
oxidized. Let the electrode area be A. Then, the number of molecules that can be oxidized at time
t, No(t), is

No(t) = AdCo(0,2) ®
Co(0,1) is the surface concentration of the oxidized species at time ¢.

The decay rate is

dN;t(t) = —kNo(t) (moles/s) ©

k is a first order decay constant (s™1).

Consider the reaction rate per unit area, vy.

1 dNo(t kNo(t
vy = 5200l 60 _ kaco(0,) (moles/(en®s)  (10)
For the reaction O + e =R,
vy = ksCo(0,t) (11)

Thus, ky = kd. From Part (a), the homogeneous rate k = 71 the heterogeneous rate ky = d/T.
So, the average lifetime of species O before it undergoes a heterogeneous electron transfer is 7 =
d/ks.
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(c). For a lifetime of 1 ms, givend = 10 A = 1 nm, ky = 1077 /1073 s = 10~* eny's. For
7 = 1ns, ky = 100 cm/s. Such rates are readily accessible in electrochemical systems. For cyclic
voltammetric perturbations at macroscopic electrodes and scan rates of about 100 mV/s, standard
(E = E") heterogeneous electron transfer rates > 0.1 cm/s are considered fast (reversible) and

rates < 1075 cm/s are idered very slow (ir ible). See Chapter 6. With microelectrodes,
standard heterogeneous rates in the range of 100 cm/s have been measured. Note, however, that
ky is kK0 lified by el de ov ial through exp [—af (E EY )], a term which under

typical room temperature cond.mons exceeds 100 for an overpotential of 250 mV and 16000 for
500 mV. Thus, lifetimes as short as 1 ns are possible, favored by high standard heterogeneous rates
and large overpotentials.

Problem 3.11 The tabulated data show that a limiting cathodic current 4, = 965 uA is reached
atn = —500 and n = —600 mV. C ively large overp ials are required to enforce this
current; hence Tafel behavior should be observed for currents less than ~ 10% of the limiting
current. A Tafel plot of the data is shown below.

4 s e
log i (in pA) Mixed kinetic and
mass-transter control
A
Limiting
Current

~ Tafel Region

logi, n/mv

[ -100 -200 ~300 -400 ~500 =600

The first three points provide a Tafel line with Slope = —6.8 = —aF/2.3RT. For T =298 K,
this yields o = 0.40. Extrapolation to 7 = 0 gives logdg = 0.98, or 49 = 9.5 uA. From equation
347,

e 95x10°%4
~ FAC ~ 96485 C/mol x 0.1 em? x 1 x 10~5 mol/em?

=98x10%em/s (1)

From equation (3.4.13),

8.31441 Jmol 'K~ x 208 K

et = 56485 Cmol= x 95 x 104

=27kQ ?)
From 4; = 965 uA and equation (1.4.9),

i 965 x 108 A

™0 = FACy ~ 96485 Cmol 1 x 0.1 om? x 1.0 x 10~ molem—3

=0.010em/s  (3)




www.Endbook.net

According to equation (1.4.28), the mass transfer resistance for the oxidized form is

8.31441 Jmol 1K~ x 298 K

= 56455 Cmol T 065 X 100 4 ~ 268 @
Problem 3.13  From equation (3.6.14a),
e (1 1 11
* = e (a—o - ﬁ) (5; N E_a) o1
B (1.60219 x 10-°C)* 1 1 <05
T 8x 7 x 8.85419 x 10-12C2N-1m~2 [4.0 x 10~ 0m 14 x 10-10m :

1.03 x 1077 = 0.64eV

where ), is the reorganization energy of the solvent and R is 2 x 7 x 10~'° m. The reorganization
of the electroactive species is ignored in this problem (\; = 0), so that from A = A; + X, (equation
(3.6.12)),

A=%o m
From equation (3.6.10b),
F(E-E°
AG* = % (1 + —L~J> (3.6.10b)
X
and letting £ = E° leads to
AG* = % =0.16eV 7))

Problem 3.15  Starting with equation (3.6.24) for Do(E, ) and equation (3.6.22) for Dg(E, A),
and substituting for Wo (X, E) from equation (3.6.34) and Wr (), E) from equation (3.6.35) leads
to the following expressions.

NaCo(0,t

Do\E) = i - A;’;)l /2 exp [—(E — E° - \)2/4XkT] )
N4Cr(0,%

Dr(\E) = —*‘—(4:/\:1(’)1 /l exp [~ (B — E° + X)?/4kT) @

AtE = E¢q, Co(0,t) = C} and Cr(0,t) = Ck, so that equations (1) and (2) can be rewritten as

NaC}
Do(A, Eeg) = mﬁﬁm exp [—(Eeg — E® — N)2/4NkT) 6))
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Da()\Eep) = W exp [~(Beg — E® + X)?/4XKT] @

At the equilibrium energy, the concentration density functions Do (), Eeg) and Dr(X, Eeg) are
equal.

—(Beg —E? + ))?
(zka)l/2 P [ DET ®

NaCp —(Beg — B — )2 N4Ch
(47rz\kT)1/2 DRT

Solving for C%/C#, one finds

Qiz:ex ~(Beg = E® + ))? + (Beg — EO — M)? ©
Cr ANKT
which, after some algebra, reduces to
Ca — (Eo — Ecq)
cy =P [ T Y
and further to
B, =E ~ kTl 22 % ®
Ch
Note that equation (8) has the general form of equation (3.2.2), the Nemst equation.
»  RT C
=g 8L (o3
E=E"+ oF In o ©)

However, equation (8) is based on the distribution of energy states between the electrode and those
of the reactants in solution, whereas the Nemst ion is based on thermod ic equilibrium
between electroactive species in solution. Further, equation (8) describes the energy, and equation
(9) describes the potential. Energy is converted to potential by dividing by —nF. Equation (9) is
derived from equation (8) by normalization by —nF . It is noted that k = R/N 4, consistent with
conversion from a per molecule to a per mole basis.

20
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MIGRATION AND DIFFUSION

Problem 4.1 The only ionic species in solution are Na* and OH ™, both present at 0.10 M. Using
equation (4.2.10), the transference number for Na¥ is

s = |2a+ |COnat Anat W
7 {2nat|ICnar Anar + 208 |Con- Aon-

Because |2yq+| = [20x-| and Cno+ = Con-, this expression reduces to

Ao,Na+ 50.11
. = =0.
AoNa+ + Aoor-  50.11+198 20 @

tNg+ =

where g has been substituted for A. From equation (2.3.6),

tor- =1 —tngr = 080 @)

For 20 e passed extemally, 20 e are injected at the cathode and 20 ¢ are withdrawn at the anode.
Thus, 20 OH™ are created at the cathode and 20 OH™ are removed at the anode. These changes

are shown in the balance sheet below.

21
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Cathode Anode
- +
20e +—> 20 ¢ +—»
20 H,0 + 20e —10 H, + 20 OH' 20 OH - 10 O, + 20 H,0 + 20e
20 OH +—» 20 OH +—»
» 4 Na
Migration
16 OH
Diffusion 40H 40H
. +
4Na 4Na

In the bulk solution, charge is transported only by migration, a fraction 0.80 being carried by OH™
moving to the anode and a fraction 0.20 carried by Na+ moving to the cathode. Thus, 16 OH~ and
4 Na* migrate through the bulk and through diffusion layers, as shown in the balance sheet. This
result could also be obtained via equation (4.3.3) by considering current flow at either electrode.

At the anode 20 OH~ are consumed, 16 of which are supplied by migration. The remaining 4
must diffuse to the el de. No Na* is d or g d, yet 4 Na* exit by migration. At
steady state, they must be replaced by diffusion to maintain a constant concentration distribution.
Likewise, the cathode generates 20 OH™ and no Nat, while 16 OH~ leave and 4 Na* armive by
migration. Thus, 4 OH™ and 4 Na*+ must diffuse outward per 20 e at steady state. The fluxes from
diffusion complete the balance sheet.

Problem 4.3 The thickness of the diffusion layer can be esti d from the root quare
diffusion length given as equation (4.4.3).

A=+2Dt 4.43)
Thus, the minimum distance d between the working electrode surface and the cell wall is

d="5A = 5V2Dt = 5/2 x 10-5 cm?/s x 100 s = 0.2 cm )

22

RS—



www.Endbook.net=

Problem 4.5 The geometry of the problem is as shown below.

differential volume
elemen_t

electrode |

Spherical symmetry implies that concentrations may change along a radial line extending from the
center. However, for all points at a given radius, the concentration is the same.

Net diffusive transport can occur only radially since only along a radius is there a gradient in
concentration. Fick’s first law, therefore, is

Jofr,t) = —Do —BC%(:’ u ®

Now consider the volume element of thickness dr contained between the radii 7 and » + dr. The
change in the number of moles of species O, Np, within the volume element over time interval
dt is the difference between the number of moles diffusing in (across boundary ) and the number
diffusing out (across boundary dr). The inbound quantity is 4mr2Jo(r, t)dt moles, where 4772
is the area of the boundary at r. Likewise, the outbound quantity is 4x (r + dr)2Jo(r + dr, t)dt.
Thus, the differential change in the number of moles of O within the element is

dNp = 4m x dt x [r2Jo(r,t) - (r + dr)*Jo(r + dr, t)] 3
Recognizing that
Jolr+ 1) = Jo(r§) + 220D gy )
leads to
dNp = 4 x dt x {[‘rz = (r+dr)*|Jo(r,t) — (r+ dr)sz} ®

To obtain the change in concentration, Co{r,t), it is necessary to divide by the volume of the

23
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element, which is 47r2dr.

dCofryt) = dt { Pt I sty - * dT)z blo(z9 } ®

The next step requires that dCo(r, ) be converted to the rate of change 8Co(r,t) /0t by rearrang-

ing this equation, and expanding the ions in 7 al
Co(r,t)  [2, dr 2dr | dr?] 8Jo(r,t)
F TR - Jo(r,t) — |1+ s p U]
Because dr is infinitesimally small, the terms ining it within the parentt are negligibl
Thus,
oty _ _Jolnt) 2
o = 220D S Jo(r) ®

Substitution from Fick’s first law then gives

&Co(rt) | 20Co(r,t)
or? r  Or

8Co(r,t)
ot

=Do (4.4.18)

which is equation (4.4.18). Note that earlier printings of the text had an error in this equation,
which appears there as equation (4.3.14) on page 132.

2
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METHODS

Problem 5.2 The equations for planar and spherical diffusion are similar.

BASIC POTENTIAL STEP

0}

1 b
i(t) = nFADC* | — + —
iH)=n [WrDt + To}

where b = 0 for a planar electrode and b = 1 for a spherical electrode. The currents for each are
shown in the spreadsheet. Note that for A = 0.02 cm? = 47rr§, the radius of the spherical electrode
is ro = 0.040 cm.

n 1
c* 1.00E-06 molicm® 12
A 0.02 em? is
D 1.00E-05 cm/s 10 4
F 96485 Cimol —O— Spherical
nFAC'D  1.93E-08 Acm o
o 0.04 cm 38
To
tis) iptanar({pA)  Ispherical(pA) g
0.1 10.89 11.37 (5] 4
0.5 487 5.35
1 344 3.93
2 243 292 2
3 1.99 247
5 1.54 2.02 0 * 1
10 1.09 1.57 0 10 20 30|
20 0.77 125 t(s)
30 0863 1.11
inf 0.00 0.48
The electrolysis at the spherical electrode exceeds that at the planar electrode by 10% when
i L+
.I‘;;herzcal ml T ®
Uplanar 7Dt
1 > 0.1 E
70 wDt
10vVrDt > 1o
2
* > oD
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For this system, this corresponds to

(0.04)2

00w < 165 = 218 ®

This is consistent with the values shown in the spreadsheet for t = 0.5 s.
Cottrell’s equation (equation (5.2.11)) is

nFAC*VD
i(t) = ———— 5.2.11
This integrates with respect to ¢ to yield the charge.
2nFAC*V/ Dt
qt) = — @

For ¢t = 10 s and the values listed above, g(t) = 2.2 x 1075 C. Faraday’s Law, Q/nF = moles
electrolyzed, yields 2.3 x 10~1 moles. In 10 mL of 1 mM solution, there are 10~5 moles of mate-
rial. In 10 s, the fraction electrolyzed is 2.3 x 10_10/10_501' 0.0023% . Thus, under conditions for

normal ic the bulk ation of the redox species is not perturbed
significantly.

Problem 5.4 The steady state current at an UME is given by equation (5.3.11).

s
T = ImFDoChH ®

2.32x107° A
4% 1 x 96487 C/mole x 1.2 x 105 cm?/s x 1 x 108 mole/em®
= 50lx107% em =5.01 pm

Problem 5.6 The system is analogous to that shown in equation (5.4.70).

MXZ P + 2¢ = M(Hg) + pX~
(a). Given the conditions outlined after equation (5.4.70), equation (5.4.80) applies.
_ - RT pRT . BT . ma
Ef, = EY FlhKo— "% lnCX+nFlnm—c (5.4.80)

A plot of Eﬁz versus InCY yields a slope of —pRT'/nF. The intercept is equal to EY —
£ 1n Ko + &5 In 4. Linear regression of the data yields Ef), = ~0.05131nC} — 0.566 with
= 0.99998. Thus, —p = 2 x 38.92V 1 x —0.0513 = —3.99 or p is 4.

26
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(b). From equation (5.4.72), K¢ = Carx4/CyC} is the formation constant for the reaction M2+
+ 4X~ = MX4. The stability constant is the same as K. From equation (5.4.82), one can solve
for K¢ as follows:

nF
K¢ = exp PH(E{’/2 -EY,) —ph c;(] 0

Because the diffusion coefficients are equal for the complex ion and the metal atom, m4 = me.
An Excel spreadsheet can be set up as shown below.

n 2
p 4
FRT(V") 38.92
Evzm(V) 0.081

Eizc(V) nF(Eipc-EirzmyRT  Cx* In{Cx)  pIn(Cx*) Kc

-0.448 -41.17736 0.10 -2.30269 -9.21034 7.64012E+21
-0.531 -47.63808 0.50 -0.69315 -2.77259 7.81763E+21
-0.566 -50.36248 1.00 0 0 7.44984E+21

An average of the last column leads to a stability constant of 7.6 x 1021, Alternatively, from
equation (5.4.82),

RT
EY,~Elfy= ——anC Fp1ncx+—Fln’"—"C‘ (54.82)

a plot of —nF(ES, T2 — Bl /2)/ RT versus In C% leads to a slope of p and an intercept of In K¢
when m 4 = m¢. A linear regression of the data given leads to p = 3.993 = 4 and In K¢ = 50.38
(with 7 = 0.99998) or K¢ = 7.58 x 102! = 7.6 x 10%!, which agrees with the previous result.

Problem 5.8 This problem develops the current response for a step at a spherical electrode to
an arbitrary potential in a solution containing both the oxidized and reduced form of the couple
where the electron transfer kinetics are governed by Butler-Volmer kinetics. The generic form is
developed in the Laplace domain, and then limiting cases are considered and expressed in the time
domain. Limiting cases include transient and steady state responses for various electron transfer
rates 0 and/or R initially present in solution, and planar and spherical electrodes. Hemispherical

are included if the hemisphere protrudes from an infinite insulating plane and the current
for the spherical electrodes is halved.

First, consider the solution to the general spherical problem without specification of the surface
boundary conditions. This problem is specified in equations (5.4.33) through (5.4.36), and is gen-
eralized by Fick’s second law in spherical coordinates (1), the initial condition (2), and the semi-
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infinite boundary condition (3).
C(r,t) _ 82C (r,t) | 20C (r,%)
a b ( or? + r Or ) ®
Cr,0) =9 @
Jlim C(rt)=g ®

(Note that for a homogeneous system initially at equilibrium, ,li."{.‘e C(r,t) and C(r,0) are equal.)

Spherical coordinate diffusion problems are solved by a change of variable such that the problem is
reduced to the problem for linear diffusion to a planar electrode. To proceed, let v(r,t) = rC(r,1)
and note the following:

ao(rt) _ o v(r,t)] _ l[}v(r,t) @
8 ot r | r ot
900t _ 8 [ond] _ 10060 30,0 .
a or| r | r or 72 2
8C (1) _ 0 ac (rt)] _ K 18v (r,t) _ v(r,t) 6
or? T oo o T or|r or r2 ©
_ 2o (r,t) 1321/ (r,%) 4 2v (r,t)
T o r o2 3
Substitution into equation (1) yields the following:
l(‘)v(r,t) B ‘%Duéc,q + %azvgr,tl
e = D{ +%V(T,t)+%{%auér,z)4ﬂ5ﬂ} @
Do (rt)
T or 0
or
du(rt) v (r,t)
- D—a,rz ®)
Re-express boundary condition (2) and initial condition (3) in terms of v(r, t).
.v(nt) _
Jim =2 =g ©®

28
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v(r,0)=rg (10)

The Laplace transform of equation (8) yiclds

8% (r,s
sv{r,s) —v(r,0) = D% (11)
Substitution of equation (10) yields the following:
0% (r,s) s _ rg
- T pemt =0 12
From Appendix A equation (A.1.32), this is an equation of the form
&y(x
% —a*y(@) +b=0 (13)
This has a solution of the form of equation (A.1.41).
y(z) = a‘ + A(s) exp [-az| + B(s) exp [az] (14

Thus, equation (12) becomes

T(r,s) == "+ A(s)exp [ \/%T] + B(s) exp [\/%r] (15)
Clr,s) = E(—:’i) = % + @ exp I:—\/gr] B( exp ]:\/gr] (16)

This is the generic expression for C(r, s). For the semi-infinite boundary condition (3), v(r,t)/r
is bounded as r — oo. Thus, B(s) = 0, and the generic solution for semi-infinite diffusion is as
follows:

C(r,s) = _L—(:' ) _9 + Als) exp [‘ —r] a7n

s r

(a). First consider the case where only O is present in solution at the start of the experiment. Now,
the expressions for Co(r, s) and Cr(r, s) are found by noting that from equations (5.4.35) and
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(5.4.36), g = Cp for Co(r, s) and g = 0 for Cr(r, s). Thus,

Totre) = % + A exp [—\/;i: ] )
Cr(r,s) = G—i‘ﬂ exp [—\/DIR } 19

Boundary condition (5.4.37) states the flux of O to the electrode surface is equal to the flux of R
away from the electrode surface. In the Laplace domain,

=rg =

o2 (Tr’ ), Dnaa’;(:’ D, @0)

Combination of this with equations (18) and (19) allows the elimination of G(s) in terms of A(s).
1 [s 1 3 38
DoA(s){fr—a exp [— D—Om:\ - ;; —0 exp [~ ESTD] } 21)
1 s 1 5 3
= _DRG(S){_;E exp [71 D—RTD] o D—Rexp 1} /D—Rm]}
Or, for £2 = Do/Dgandy = [1 +70v/3/Dg)] / [l +7‘0\/.9/DR},

G(s) = —A(s)ﬁvﬁ@ﬂ @2
exp

From equation (19),

Otr ) =~ 2 axp - o] exp [ 5 o) 23

Note that neither A(s) nor G(s) are r-dependent. Equations (18) and (23) are equations (5.5.31)
and (5.5.32). These are applicable independent of the surface boundary condition for electrode
kinetics.

The electrode surface condition for Butler-Volmer kinetics and the current expression are specified.

Do—ac%in t)t = k;Co(ro, t) ~ ksCr(ro,t) @

=rq
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ol _ i)
Do5 L = F4 @)

Note that equation (25) in conjunction with (20) yields an equivalent current expression.

%(% _ _DRHC;(;E-T,t)\V 6

The Laplace transform of equations (24) and (25) yields the following:

Do%{ = k;Co(ro,s) — kyCrlrg,s) @7
8Co(r,s) _is)
D=5, L ~F4 @8)

This is applicable provided ks and k, are time independent. That is, the potential is stepped, not
swept.
Substitution of equations (18) and (23) into equation (27) yields the following:

A(s)Do s | _As)VsDo B

— T exp [— Do 7'0} ——__7"0 ex] [ Do ro] 29)

. 2y

G A [5) 5
Solving for A(s) yields
—EsCare (’: 0 exp |4 /27

Als) = ____M (30)

Do 4 /sDo + by + ket

Equation (18) then becomes equation (5.5.34).

e | Er e |- /]

Co(r,s) = =2 - 31)
o) $ (—‘z+\/sDo+k!+kb ’7) ¢
_ [ kyChr exp [—- /5 (r— ’I‘o)] (5530

s 3DOT(1+TO\/DTD+%%+‘° ’nr)
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Equation (23) becomes equation (5.5.35).

MO o[ - [ 0= ro)

Chr(rs) = (32)
7 (B2 + V5D5 + ks + ko)
kyCrieyexp | -\ /75 (r = r0)]
= — (5.5.35)
sDor (1 +roy/B5 + B+ —§—7—"D0"°)
The current expression (equation (28)) yields the following:
%)~k To(ro,9) - KT ) 3

ksC B kiChro
$ Dos(1+ru./ﬁa+%§+k—"g—zﬂ

) X [k/ + chE"y}

Define two dimensionless parameters and note a third.

5 =ro,/D%) (34)

rokys
=== 35
"= 69
Ky
= i (36)
Then, equation (33) becomes equation (5.5.37).
FADoC} K21+ 6¢%y FADoC} 1+6
7s) = T2 [ ]2 =20 | (5537)
oS 1+ 6+ &[1+0¢%] 708 L8 1+ 06%]

(b). For the situation where R is initially present in solution, Cr(r,t) is such that g = Cf in
equations (2) and (3). Then, equations (18) and (20) remain the same and equation (27) is replaced

with equation (37) below.
Cr | H(s) s
=ZR L \% I
Chr(r,s) e [ \ /Dnr} 37
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H(s) is elimi d by ication of ion (20) to ions (18) and (37). By inspection this
yields the following because the derivative with respect to  of the first term on the RHS of equation
(37) is zero.

exp [— /DLDTO
H(s)=G(s) = ~A(s)§27~[——l @8
exp [* ﬁ‘;ro]
Substitution into equation (27) yields an expressi 1 to equation (29) with one additional
term.
A( s)Do 3 A(s sDo [
[ D" exp Do (39)

()l )

e s O ) s e S N

As) = =
O = "D 75B0 1y + ey 175 T AT 66]

This is similar to the term found in part (a) except there is an additional term for CF, . Substitution
of equations (18) and (37) into equation (33) yields

%‘% = k,{% Als )exp[ -DS—OTOJ} @

-k.,{% A(s)&vexp[ \/Em]}
i B

- o o
;F:—ZZ:K[TO‘GTE] +m[1+9§2 ———exp[ 1/ 7‘0] 42)

Upon substitution of equation (40),

s o) o[ -]

(s)ro cy  ,Ch
= k|29
FADg [ s s } P Al S 0] @)
- K[%_gﬁ} 148
s s J[14+6+k[L+68%]
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Or,
_FADo ., " 1+4
(s) = 0 C3 — 6CE) {———%& i 0527] (5.5.41)
This is equation (5.5.41).

Problem5.10 Consider the generic case of linear diffusion to a planar electrode. This is specified
by Fick’s second law (1), the initial condition (2), and the semi-infinite boundary condition (3).

C(z,t) _ 8C(x,t)
TR )
Clz,0)=¢ @
Jim C(z,t) =g ©)}

The Laplace transform of equation (1) with respect to ¢ yields

sC (z,5) — C(z,0) = Déigg—’s) @
From Appendix A equation (A.1.32), this is an equation of the form
% —a’y(@)+b=10 ®)
This has a solution of the form of Equation (A.1.41).
y(z) = % + A(s) exp [~ax] + B(s) exp [az] ©)

‘Thus, equation (4) becomes

C(z,s) = % + A(s) exp [— \/%z] + B(s)exp [\/—-;:z] D

This is the generic solution for linear diffusion. If the system is a semi-infinite system, as charac-
terized by equation (3), then C(z, s) must be bounded as z - 0o, and, thus, B(s} = 0. The generic
solution for linear diffusion under semi-infinite conditions is

Cz,s) = % + A(s) exp [—\/%z] ®)

34
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(). When both O and R are present in solution, it is necessary to develop the diffusion equations
and boundary and initial conditions for both species, unless the conditions are either mass transport

limited or irreversible electrode kinetics.

8Co(z, t) 626'0 (z,t)
ot

Bz
8Cr(,t) _ ,, *Cr(,t)
ot " DR g

Co (z,0) =
Cr(z,0)=Ch

Jlim Co (2,t) = Cp

Jim Cr (2,t) = Ck

8Colz,t) __, 9Ca(1)
Do ox | =Dz oz
lz=0 =0
_ Co(0,t) nF o
= a0,y =P |RT (7-2%)
i(t) 8Colz,t)
aFA = Do | .

®

(10)

()]

12

13y

14

(1s)

s

an

The Laplace transform of equations (9) and (10) under conditions of equations (11) to (14) yields

expressions of the form of equation (8).

Colz,s) = 0 + A(s) exp [ \/%1]
Cr(z,s) = —5 + G(s) exp [—&Z]

35
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The Laplace transform of equations (15), (16), and (17) yields the following.

aag(x,s)l - _Dnaﬁk(m,s)l

Do oz L or @0
=0 =0
To(0,8) = 6CR(0,s) (21)
i(s) _ p 9Co(z,s)
A= o | @
From equation (20), and given &2 = Do/D o
— /8DoA(s) = \/sDrG(s) 23)
Or,
G(s) = ~£A(s) @9
From the above equation and equation (21),
ng +A(s)=#6 (%’i + G(s)) =0 (gf - §A(s)) (25)
Upon rearranging, A(s) is found.
__G5-0C%
AC) =S @9
Substituting into equations (18) and (19) yields the following:
- _Ch _[C5—6CH =
Colz,s) = s T ST 1+ exp D—Oz @7
Fel _Ck  EC-0CH  [_ [5
Cr(®,s) = S + ) exp DRI (28)
The cutrent is found from equation (22).
7 el .« _ 00"
) _p 8Cos)| _ [DolCs-00k @)

nFA~ "° oz L s (1+£0)
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This is inverted using s~Y/2 & (nt)"Y/2.

i) _ 1 [Ch-6CH .
nFAVDo vt (1+¢6)

A sampled current voltammogram is the current at a time 7 from a series of potential steps made
to various values of E, where § = Co(0,1)/Cp(0,t) = exp [nF (E — EO')/RT]. ‘When O
and R are both present in solution, there will be two diffusion limited currents, one for reduction
(i4,c(7) = nFACEH+/Do/n7) and one for oxidation (ig () = ~nFACH+/Dg/T). The current
magnitude between iq c and iq q 18 44, - ia,s - For convenience of plotting, equation (30) is made
dimensionless at time 7 as follows. Note that i q(7)/iy (T) = —~Cx/£C.

ir) 1= o5k dae(r) |1~ ey 1 -
t4c — ida L+80 | ige(T) —tdq(7) 1466 (1_ iae(T )

l_eag . 3a.0(7,
= | Tvee (H—Ea_)

£Co

A dimensionless plot of the sampled current voltammogram is shown in the spreadsheet on the
next page for several values of £ (noted in the figure legend as y) and a = C}/Cp,. Let X(7) =
©(7) / [ia,c —%a,]- The half wave potential arises at the potential corresponding to the midpoint
between 74 and 2g, . This point is darkened for each curve in the Figure. When £ (= y)is 1,
the half wave potentials fall at E = EY, independent of the ion ratio. These curves are
denoted by a line through each set of data. When £ # 1, the half wave potentials are at values of
E different from E¥ . For £ < 1, the half wave potential is shifted positive; for £ > 1, the shift
is negative The concentration ratio shifts the curve up and down on the y-axis but not along the

ial axis. This d d of the half wave potential on £ but not the concentration
rano The relative magmtudss of the limiting current scale varies with concentration and £.

The analytical relationship for half wave p ial is found by expressing ion (24) in terms of
currents, and solving for 8. From equation (31),
. oti
i(r) = 'ld’C(T);; ggdva(f) 62
nF o igo(T) —4(7)
0= o0 75 (5 2°)] - ity 9

Take the natural logarithm of both sides and solve for E.

_ g BT BT | [iae(r) —i(r)
E=F - Zing+ 2 [i(T)-i,;,a(‘r)] (34
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The rightmost term goes to zero when i(1) = (ig,c + %a,4) /2. This leaves Ey s, which is indepen-
dent of concentration but exhibits the usual dependence on £.

1.0
0.5
x 0.0
0.5 +—
1.0

. RT
— v _ 2=
Eyp=E" - = In¢

0.2
a
n(E-E%)

v) theta
020 240E+03
015  3.43E+02
010  4.90E+01
009  3.32E+0%
0.08  2.25E+01
007  1.52E+01
0.06  1.03E+01
0.05  7.00E+00
004  4.74E+00
003 3.21E+00
002  2.18E+00
0.01  1.48E+00
0.00  1.00E+00
001  6.78E-01
002 4.59E-01
003 3.11E-01
004 211E-01
0.05  1.43E-01
.06 9.68E-02
0.07 6.56E-02
0.08  4.44E-02
008  3.01E-02
010  2.04E-02
015  2.91E-03
020 4.16E-04

X
-0.500
-0.497
-0.480
-0.471
-0.457
-0.438
-0412
-0.375
-0.326
-0.263
-0.185
-0.096

0.000
0.096
0.185
0.263
0.326
0.375
0412
0.438
0457
0.471
0.480
0.497
0.500

00  -01
nf(E-E0") (V)
0.2 2 1
1 1 05
X X X
-0.166 -0.666 -0.666
-0.164 -0.664 -0.661
-0.147 -0.647 -0.627
-0.137 -0.637 -0.610
-0.124 -0.624 -0.585
-0.105 -0.605 -0.551
-0.078 -0.578 -0.504
-0.042 -0.542 -0.444
0.007 -0493 -0.370
0.071 -0.429 -0.283
0.148 -0.352 -0.188
0.237 -0.263 -0.091
0333 -0.167 0.000
0429 -0.071 0.080
0519  0.019 0.147
0.596 0.096 0.199
0.659 0.159 0.238
0.708 0.208 0.267
0.745 0.245 0.287
0772 0272 0.302
0.791 0.291 0.312
0.804 0.304 0.319
0.813 0.313 0.323
0.830 0.330 0.332
0833 0333 0333

X

-0.333
-0.332
-0.323
-0.318
-0.312
-0.302
-0.287
-0.267
-0.238
-0.199
-0.147
-0.080
0.000
0.001

0.188
0.283
0.370
0.444
0.504
0.551

0.585

0.610
0.627
0.681

0.666

X
0.000
0.003
0.020
0.029
0.043
0.062
0.088
0.125
0.174
0.237
0.315
0.404
0.500
0.596
0.685
0.763
0.826
0.875
0.912
0.938
0.957
0.971
0.980
0.997
1.000

X
0.002
0.014
0.093
0.131
0.182
0.247
0.326
0.417
0513
0.608
0.697
0.772
0.833
0.881
0.916
0.941
0.960
0.972
0.981
0.987
0.991
0.994
0.996
0.999
1.000

(33)

(b). It is best to use the form of equation (5.5.41) more appropriate to transient responses. It is
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shown in equation (36) below.

%(s) 1[G - 6C3) { 1+6 ] 36

FAVDo 8 5 | +1+6ehy

In this case, the electrode is planar, and as in problem 5.8, x >> 1,6 >> 1,andy — 1/£. Further,
as the system is reversible, « >> §. This reduces the above equation to the following:

O oL | o

FAVDo Ve 1+40¢

This inverts with s~1/2 & (irt) /% to yield equation (30).

Problem 5.12 The keys to this problem are the unit step function, Sx(t),the concept of superpo-
sition, and the zero shift theorem. The unit step function multiplies a function F(t), and such that
the function is equal to zero until t equals or exceeds «; for t > &, the value at time ¢ is defined by
F(t — ). Superposition can be used on this double potential step example because (1) the prob-
lem can be specified as two separate problems over the ranges of 0 to ¢ < K and ¢ > «, and )
the initia} and boundary conditions for the second part are known independent of the time evolu-
tion of the first part. That is, because the surface boundary conditions for the first part are pinned
(i.e., cither nernstian or zero concentration), the second part can be specified without knowing the
time evolution of the surface concentration in the first part. Finally, the zero shift theorem allows
the product of the unit step function and F(t} to be transformed into s coordinates.

For t < 7, the problem is specified as typical for a potential step to an arbitrary potential Ey,
which establishes a value &'. As the problem involves nernstian surface conditions, it is necessary
to specify both O and R. This was specified previously in problem 5.10, equations 9 to (17).

8Ck(z,t) _ 8°Ch (z,1)
5t - P g o
8CL(z, 1) B2CL (1)
RN bl ANt A4
5t DR o @
Ch(,0)=C3 ©)
Ch(®,0)=Ck @
Jim C6 (@1 =Co ®)
H 4 —
lim Ch(@,H)=C ®

39



m WA ER S ook.net

Duacg,(z,z)| o DKBC{z(r,t)I -
Bz o oz I
_ k09 _, _[nF (o o
oy P {RT (Br- ) ®
o) _p 00h(e.)
nFA T or | o ®

As developed in problem 5.10 (equation (37)), this yields the current response for the forward step
(equation (5.7.13) where C, = 0.

i) 1[G 0y
FAVDo s |1+0€
Or, on inversion,
i) _ 1 [C5-0C3) an
wFAYDG  Jat (L+¢6)
Also, from problem 5.10 ( ion (28)), the ion of R at the electrode surface on the
forward step is found.
- )
Trl09) = 5 ) 12
Or, on inversion,
o
0.0 = 1% a3

At the electrode surface on the forward step, the concentrations of O and R (Cb and C"Q, Tespec-
tively) are pinned, such that

C5(0,8) = 0'CH(0,8) = Cp, = 0/C (14)

The surface concenh-auons for the reverse step are also pinned and thus rigorously specified. These
are independent of the pecified on the forward step because the sur-
face condition is nemstian.

CH(0,t) = 0" CH(0,) = Cp = 0°Cy 15)
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Fort > A deﬁn: a pair of ﬁmcuons Fo(m t) and Fp(z,t) that characterize the perturbation in
] caused by the reverse step.

Fo(z,t) = S:())C (@,t - ) (16)
Fr(@,t) = $:()Cf (w,t ~ 7) an

Fick’s second law applies such that

dFp(z,t) 8% Fo(,t)
—ar Do s
OFg(z,t) _ , 0*Fr(z,t)

a Da Ox? 9

The initial concentrations are both set to zero because there is no perturbation due to the second
step at time ¢ = 0.

Fo(z,0)=0 (20)

Fr(z,0)=0 1)

Also, the perturbation on the reverse step will not significantly affect the bulk concentrations.

lim Foz,2) =0 @2
Jim Fa(z,) =0 (23)

The surface boundary condition is defined by the change in concentration brought about by the
reverse step, as well as the temporal shift embedded in Sy ().

Fo(0,) = 5:(t) [Co - Co) @
F(0,t) = 5, (1) [c; - UR] @5
The total flux of O and R at the electrode must be conserved.
BCo(x t) _ OCr(w,t) t) _ BC’Q’ (x,1) OFp(z,t)
oz L = ~Dr oz | o =Do oz o +Do 2 @0
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_ _p.fChanl ) oFa1)
B b L R
=0 =0
Given equation (7),
DOBFo(z,t)l - OFg(z, t)| @

jil
Oz L:a Ox L:o
The other surface boundary condition is the nernstian condition, specified through equation (15).

By analogy to the solution for the generic semi-infinite case presented in Problem S.10, substitution
of equations (20) through (23) into equations (18) and (19) yields the following expressions in s-

coordinates.
Fola,s) = Als) exp [—\/gz] 8

F(z,s) = B(s) exp [‘\/D—:’] 29

The Laplace transform of equations (24) and (25) and substitution of equations (28) and (29) yields
A(s) and B(s).

o(0,9) = exp o] L0292 = () Go)

F0.9) = exp-on) =% = (g an

Substitution of equations (14) and (15) yields

A(s) = exp[—sT] LC;L;:—’LC—;Z 32)
Application of equation (27) the following:
~ y/sDg exp[—s7] % = /sDrexp[-s7] @ ¢3)
This is solved to find C%.
Cr= nil—}f—z— (4

)
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Note that equations (13) and (14) yield the expression for C}l, and thus C;z-

. ECh
Cr=1y 1+60
. ECS
Cr=17 509,,
Or,
__[.iT_] e &
At =22 Tey [P 2
exp [~—a1'] 1 1
Ble) = £ {1+50” N 1+§9'}

Substitution into equations (28) and (29) generates

_ - v
Fo(z,s) = exp [A’/D%;z] Mﬁ Co [1 oy TEG’}
i) = [\ [g52] 22 ees [ g -

The total concentrations are defined as follows:
Tolx,s) = Ch(x,s) + Folz,s) Crlz,s) = Ck(x,s) + Fr(x,s)
The total current on the reverse step is then defined as

() _

0C_R(m,s)| _ BCR(:E s)] D BF_R(z,s)|
nFA

—Dpg

From equations (9) and (10),

i(s) _ is(s) _p OFg(z,s)
nFA nFA ™

_ VDo exp 1
= [1+9’5] +‘/_ ey [1-4-50" -

- «/D_
= l+6’§] +C5v/Do

exp [—s‘r] L |
Vs THE0 ~1+¢0
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o exp [—s7] i1 CyvDo 1
= CovDo— L+59” 1+59’}+ 75 [1+9’5]

Or, upon inversion for t > 7, equation (5.7.14) is found,

N B S [_1_ [
nFACH VDo  \fa(t—r) [L+E07 1+¢0

1 1
v [m] (5.7.14)

For steps in the forward and reverse directions to the mass transport limited plateaus of reduction of
O and oxidation of R, equation (5.7.14) is simplified such that for the reduction § — 0 (equation
(8)) and for the oxidation §” — oo (equation (15)). This yields equation (5.7.15).

W) 1

1
BYF Yo7y = e B (5.7.15)

Problem 5.14 From the data in the caption of Figure 5.84,C% = 1.0 x 10~5 moliem3, 4 =
0.0230 cm?, t}/z = 5.1 ms/2, and, for a plot of Q(t) vs. /%, the slope is 3.52 x 108 C/ms!/2.
The slope is specified by equation (5.8.10).

(5.8.10)

QW :nFAk;CL‘j{ Wi 1 }

Hyr H

H is expressed in terms of t; (equation (5.8.11)) as H = /7 /4t,. (Note that H is also found from
the intercept, although with larger error.) Thus, H = 0.174 ms~"/2. The slope of Q(z) vs. v/ is
2nF AkyCh/ (H+/7). For Cd%* reduction, n = 2.

3.52 x 1078 C/ms'/? x 0.174 ms™Y2 x /7 x 10° ms/s

b = T2 % 00230 om? x (96485 C/mal) x (1.0 x 10-5 mol/cm3)

=0.0122em/s (1)

This value agrees well with the value of 0.0116 to 0.0137 cm/s reported in the original paper by
Christie, Lauer, and Osteryoung (JEAC 7, 60 (1964)).

Problem 5.16 From the caption of Figure 5.8.3, for the forward step, the slope is 9.89 x 10~¢
C/s%/2 and the intercept is 7.9 x 107 C. From equation (5.8.2) for the forward step, the charge is

0
Q) = ZnFAi%\/Dot

+ Qu +nFATo (5.8.2)
From Figure 5.8.1, n = 1, A = 0.018 em?, and C} = 0.95 x 10~ moliem®. The potential is
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stepped -260 mV past E¥, so that the step is to the mass transport limit. Thus, from Q(t) vs. v/%,

Dy = [ slopevE]®_ (989 x 1078 C//3) V7 z
o= 2nFACYH| — |2 x1x (96485 C/mol) (0.018 cm?) (0.95 x 106 mol/em?)
= 2.82x107° em?/s )

Typical values of diffusion coefficients in solution are of the order of 1075 to 10~ ecm?%’s, with
diffusion coefficients in most volatile (less viscous) organics faster than those in water. The most
common source of error in calculating diffusion coefficients is using units of M instead of mol/em®
for the concentration.

A comparison of equations (5.8.2) and (5.8.6) indicates that the slopes for the forward and reverse
steps should be equal if the system is characterized by simple mass transport limited oxidation and
reduction. The slope reported for the oxidation is about 5% lower than that for the reduction. The
intercepts for the reduction and oxidation are, respectively, 7.9 x 10~7 C and 6.6 x 1077 C.

One possible cause of the differences in slopes and intercept is that the oxidized species DCB
adsorbs whereas the reduced species DCB® either does not adsorb or adsorbs less than DCB. If
the surface excess for the two forms differ, then this is reflected in the difference in the intercepts
for the forward and reverse steps. If the adsorption associated with the forward step is extensive
enough, it can disturb the concentration profile sufficiently that the concentration profile of R is
disrupted from that expected for a simple mass transport limited reaction.

An alternative reason for the difference in the slopes is that DCB® is being consumed through a
chemical reaction so that its concentration is less than that of DCB. Here, the formal potential is
sufficiently negative that trace oxygen could react with DCB*.

Problem 5.18 (a). Equation (5.3.2b) applies for a spherical electrode, but for a hemisphere em-
bedded in a semi-infinite insulating plane, half the current is generated. The steady-state current is
used to find the diffusion coefficient given a radius of 5.0 x 104 cm, concentration of 1.0 x 103
mol/em3, andn = 1.

id

D, —_
° = 2mFChr,

®

15x1078 4
2 x w x 1(96485 C/mol) (1.0 x 10-° mol/cm?) (5.0 x 10~% cm)
= 50x10"%cm/s

(b). In Anal. Chem. 64 2293 (1992), tables are provided for determining the standard heteroge-
neous rate constant and transfer coefficient from A B3y and AEy 4. For the values of AF3/4 =
35.0 mV and AEyy4 = 31.5 mV, it is found that, « = 0.38 and A = k"/mo = 3.95, where
mo = Do/ro = (5.0 x 1078 cm?/s) /5.0 x 104 cm = 0.01 cm/s. Thus, k° = 0.0395 cm/s.
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6 POTENTIAL SWEEP METHODS

Problem 6.2 Equations (6.2.8) and (6.2.9) express the surface concentration of O and R in terms
of convolution integrals of the current.

t
1
) =0~ —7r— 2.8
Co(0,1) = G5 nFA\/moj ©23)
1 t
Cr(0,t) = mo/ 629)
These can be combined to yield equation (5.4.26).
DY2Co(0,1) + DY*Cr(0,0) W

t
DY\ 1 i(r) - VDr i(r)
o o nFAx/wDoo Vi=T "FA\/WEEO Vi—-T1
pi*cs

Problem 6.4 The expression for the peak current in cyclic voltammetry under reversible condi-
tions is given by equation (6.2.18).

ip(v) F 2
lﬁ = 0A44631/ﬁFn3/2ADg (o7 (62.18)

For chronoamperometry under mass transport limited conditions, the Cottrell equation (equation
(5.2.11)) applies.

_ nPACHDY?
T
Experimental data for cyclic y and chr perometry on a single system will yield

both ip(v)/+/v and i(t)v/E. The ratio of these two parameters yields an expression for determining
n without knowing A, Do, and C.

Ve G2.11)

NP 0448yt ADG Co A PADC) 0 4463\/E 12
WOV 2FACy DY = "T"
) 2LAGDa.
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The above ratio is equal to 4.935n1/2 at 298 K.

A similar procedure is not suitable for determining n for irreversible reactions, but does allow the
transfer coefficient, «, to be determined. For an irreversible system at 298 K, where the rate deter-
mining step proceeds by a single electron transfer but the overall process proceeds by n electrons,
equation (6.3.8) is appropriate. For comments on the incorporation of n in equation (6.3.8), see the
text on page 236 just before the start of Section 6.4.

’f}’i) (299 x 10% nv/aADY?CY (63.8)

Combination with the Cottrell equation yields the following, which allows the determination of
for irreversible electron transfers independent of n, A, Do, and C. The right-most term applies
at 298 K.

B (299 %109 VAADY'CH _ (299X 10%) VAE _, V&

OVE an‘Q/’c-a nF e ®
Problem 6.6 Within the ial window of itrile, b h (BP) can only be re-

duced and TPTA can only be oxidized. Their standard potentials relative to SCE can be found in
Table C.3.

(a). For potential scanned from 0.5 to 1.0 V, TPTA is oxidized as TPTA = TPTA'* + e at a formal
potential of approximately 0.7 V vs. QRE. As the potential is scanned in the reverse direction
from 1.0 to 0.5 V, the radical cation is reduced to TPTA. The peak heights, measured from the
‘baseline for the forward and reverse scans are the same, consistent with no homogeneous reactions.
The peak splitting is about 100 mV, above the approximately 53/n mV expected for reversible
electron transfers. (See the bottom of page 241 in the text.) This peak splitting is conslstent with

q ible electron fers for scan rates normally ible at i

For the potential scanned from ~1.5 to —2.0 V, BP is reduced (BP + e = BP") with a formal
potential of approximately —1.8 V vs QRE. As the potential scan direction is reversed, the radical
anion is oxxdlzed back to BP. The measured peak heights are the same, again consistent with no
1 1 i The peak splitting is ~125 mV, consistent with quasireversible
heterogeneous electron transfer at scan rates normally accessible at macroscopic disks.

(b). The current in this potential range is decaying because the current is set by the mass transport
limited, linear diffusion of the reactant (TPTA) to the planar electrode. That is, the diffusion control
of the current for Crpra — 0 at the electrode surface causes the current to decay as t~1/2. Under
mass transport limited, linear diffusion, the flux of material to the electrode decreases with time,
as does the current. The same effect is observed in potential step experiments (Chapter 5). In the
cyelic voltammogram, this portion of the curve is called the diffusional tail, and as in potential step
experiments, the current decays as t~/2.
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(c). Note that the current at the start of the voltammogram is essentially zero, consistent with little
charging current. Thus, the currents observed at —1.0 V are consistent with diffusional tailing for
the reduction of TPTA* and for the oxidation of BP". The current at —1.0V is set by charging
current as well as the residual diffusional tailing for the reduction of TPTA™ and for the oxidation
of BP".

Problem 6.8 The cyclic voltammogram in Figure 6.10.3 is consistent with the chemically re-
versible reduction and oxidation of oxygen. The peak splitting of approximately 130 mV is consis-
tent with quasireversible electron transfer kinetics on a cyclic voltammetric timescale for a one elec-
tron process. The sampled-current voltammogram provides a linear plot of E versus log {(ia — 1)/1]
with a slope of 63 mV, consistent with either a reversible or a highly m‘eversxble electron trans-
fer. In Section 7.2.2, for an irreversible electron transfer under pol

(7.2.7) shows a plot of E versus log [(i4 — 1)/1] w111 have a slo‘pe 0£0.0542/ a For reversﬂ)le elec-

tron transfer kinetics on the sampled—current vol ic (i.e. pol ic) 1 equa-
tlon (1 4 16) apphes and the expected slope is RT//nF. As the on cyclic vol ic
is qt sible, and the ti le for polarography is longer, the reversible analysis

is appropriate for the polarographic data. The ESR signal indicates that the reduction product is a
radical.

As small amounts of methanol are added, the voltammogram shifts toward positive potentials and
the forward peak increases in height whereas the reverse peak decreases. This behavior is consistent
with a chemical reaction between the methanol and the reduction product. The limiting behavior
in the presence of methanol shows that the reduction proceeds at -0.4 volts (far positive of that
found for oxygen alone). The polarographic current is twice that found in the absence of methanol.
The siope of the wave is 78 mV. These results indicate that in the limit, the reduction product is
consumed by reaction with methanol. A doubling of the limiting current is consistent with twice
as many electrons being transferred in the presence of methanol.

(a). Oxygen is a paramagnetic species with two unpaired electrons. The reduction of oxygen with
one electron leads to the formation of superoxide (O;), a species with one unpalred electron that
is ESR active. The two electron reduction of oxygen leads to peroxide (02 ), which is not ESR.
active. Thus, the reaction being considered is Oz +e = Oy,

(b). When methanol is present, the data are consistent with a doubling in the number of electrons
transferred. Consider equation (7.2.1). Under the mass transport limited conditions of limiting
currents, the surface concentration is zero. The current is doubled compared to that in the absence
of methanol, but the concentration and other experimental conditions have remained the same, so
n is doubled. The reaction of O;” with MeOH will shift the wave to positive potentials. The two
electron reduction of oxygen leads to the formation of peroxide, as shown below.
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Oy +e=05

05 +MeOH = HO, + MeO~
HO; +e¢+=HO;

HO; +MeOH = Hy0p + MeO~

(). The cyclic voltammogram shown in Figure 6.10.3 is consistent with quasireversible electron

transfer kinetics. The sampled current vol ic data are i with an almost reversible
electron transfer as shown by the slope of 63 mV. The ti le for led current vol y
is longer than the ti le for cyclic vol y, and the difference is sufficient that oxygen
reduction is q ible on the shorter ti 1

(d). In summary, oxygen alone undergoes a one electron reduction to superoxide radical anion. On
a cyclic vol ic ti le, this reduction is quasi ible; on a pled current vol

ric (polarographic) timescale, the reduction is reversible. In the presence of methanol, the oxygen
undergoes a two electron reduction to form peroxide. The reaction of the reduction product with
methanol shifts the reduction to less extreme potentials. The polarographic data suggest that the
kinetics for this process are less than reversible.

The difference in oxygen reduction in the absence and presence of protons is highlighted in this
problem. In water, oxygen is reduced by two or four electrons to either peroxide or water. Super-
oxide is not generated.

Problem 6.10 The polarographic data suggest that the electrolysis of I is reversible for the reduc-
tion. The cyclic voltammogram in Figure 6.10.5 indicates that I can be oxidized at approximately
0.75 V and reduced at approximately -1.5 V. Both waves are i with no h re-
actions.

(a). I can be oxidized to form I*", a green radical cation, as indicated by the ESR signal.
I=I*+e Eyjp = +0.8V vs. SCE

This can be reduced back to I. From the cyclic voltammogram, I can be reduced to form a magenta
solution of radical anion I,

I+e=1" Eijp~ 146V

Again, this is consistent with an ESR signal. The radical anion can be oxidized to regenerate I.

(b). The cyclic vol ic wave at approxi ly + 0.75 V is consistent with the reaction (I =
I*" +e). The electron transfer is a single electron, reversible process as indicated by a peak splitting
of approximately 60 mV. There is no evidi of t reacti The wave at approxi-
mately -1.5 volts is also chemically reversible. The peak splitting is approximately 190 mV for the
reduction wave, which suggests quasireversible/irreversible nature to this reaction. This separation
suggests that the kinetic parameter ¢ (equation (6.5.5)) is, from Table 6.5.2, approximately 0.10 to
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0.20 or A is approximately 0.2 to 0.4. The ratio ¢pc(Z, I~ /1 (I,I7") is approximately 0.6, which
suggests, from results in Figure 6.4.2, that o = 0.3. As the dlﬂ“usxon coefficient and concentration
of 1 remain the same, this is consistent with slower kinetics in the reduction of I.

(c). For the reduction, the cyclic vol has a peak splitting consistent with quasireversible
(approaching irreversible) kinetics. The slope of the wave of the polarographic experiment is 59
mV, consistent with either highly irreversible or reversible electron transfer. For an irreversible
process, equation (7.2.7) yields the slope of 0.0542/c.. For 59 mV, this yields an « of 0.9. Such
an extreme value of the transfer coefficient would lead to a highly asymmetric voltammetric wave.
The wave shown in Figure 6.10.5 is symmetric, consistent with a transfer coefficient near 0.5 or
0.3 as approximately calculated in part (b). The polarographic data is consistent with reversible
electron transfer. The quasireversible behavior observed under cyclic voltammetric perturbation

is consistent with the much faster ti 1 d with a at 500 mV/s. The
term reversibility characterizes a system where the rate of heterogeneous electron transfer is rapid
compared to the rate of vol ic perturbation. Chemically reversible refers to a process where

there are no chemical reactions that perturb the concentration of the electroactive species on the
timescale of the measurement.

{d). The diffusion current constant is described by equation (7.1.11), a rearrangement of the Ilkovic
equation.

(i) max 1/2
(Dmax = —2dmex__ _ 08 pY @.L11)
T 3t,1,(fxC’5

For a diffusion coefficient of 2 x 1075 cm?/s and n = 1, this yields (I)max equals 3.17.

{e). For the reduction, the peak splitting at 500 mV/s is about 190 mV. From Table 6.5.2, this yields
1 of approximately 0.14. For Do = Dg = 2 x 107° cm?/s, equation (6.5.5) reduces to

=/7DoFv/RT = 1/122.3Dov 2t 298 K o)

Here, k° = 0.005 cm/s. For different scan rates, this can be used to calculate 7 and then find
AE, from Table 6.5.2. The peak currents are calculated using A = /7 to find K(A, ) from
Figure 6.4.2, which in turn yields the peak current from equation (6.4.6). The peak currents for the
reversible oxidation are calculated using equation (6.2.19); the peak splitting is pinned at 59 mV.
Allow o= 0.5, Cp = 1mM; A = 1 cm?; » = 1. Plots of i, and AE, with v are shown below
for both the oxidation and reduction of I. The reversible oxidation process is marked as closed
diamonds; it is assumed that the process remains reversible at 1 V/s, The reduction is marked with
open squares. Note that over the range of scan rates reported below, the reduction response varies
from almost reversible to irreversibie. The development below is more precise than the sketches
requested in the problem.
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1a]
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0 - l» . * .
0 400 800 1200 [} 400 800 1200
v (Vis) v (Vis)
Do= 2.00E-05 cm/s Ct=1mM A=1om* n=1 a=05
K= 0.005 cmvs
K(A,0)
v(mVis) y=An"® AEp(mV) logA Iipfiprev ip(mA) Ip,rev(mA)Ep,rev (mV)
021 7 63 1.09 1 0.7 0.17 59
0.41 5 85 0.95 0.98 0.24 0.24 59
1.14 3 68 0.73 0.97 0.39 0.41 59
256 2 72 0.55 0.96 0.58 0.61 59
10.22 1 84 0.25 0.95 1.16 1.22 59
1817 075 92 012 0.4 1.52 1.62 59
40.88 0.5 105 -0.05 0.92 224 243 59
8343 035 121 -0.21 0.89 3.09 3.47 59
16353 0.25 141 -0.35 0.87 423 4.86 59
500.00 0.14 180 -0.61 0.85 7.23 8.51 59

To summarize, for the reversible green couple, in,(L, I7) varies as v'/2 whereas AE,(L, I*) is
constant at approximately 59 mV. For the quasireversible magenta couple, ipc(I, 1) variation with
v will follow that shown in Figure 6.4.2 and equation (6.4.6). AE, will increase with increasing
scan rate as given in Table 6.5.2.

Problem 6.12 (a). The value of ¥ is calculated using equation (6.5.5). When Do = Dg, this
reduces to

k0

¥= /TDoFv/RT

Mirkin, Richards, and Bard found k° = 3.7 cm/s and Dg = 1.70 x 10~ ¢cm?%/s. Paul and Leddy
(4nal. Chem. 67(10) (1995) 1661-1668) have reported a simple linear relationship between ¢ and
AE,. The relationship varies slightly with c, but is well generalized for 0.5 < a < 0.7 as follows.
1t is formally applicable for 0.1 < 3 < 20. The transfer coefficient for ferrocene is close to 0.5.

@

AE, = 0—;73 +2.386

nF

RT @
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Or, for298 K andn = 1,
AE, = % +0.06131 3)

Values of ¢ and AE,, are tabulated below. For comparison, AE), found by extrapolation from the
data of Nicholson and Shain in Table 6.5.2 are listed.

(Vi) ¥ AE,@V)  AB, (mV)(NS)

3 46.85 61.7

30 14.82 62,7 61.8
100 8.12 63.8 62.8
200 5.74 64.8 64.3
300  4.69 65.6 65.3
600 331 67.3 674
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7 POLAROGRAPH ND PULSE

VOLTAMMETRY

Problem 7.1 (a). The wave shape for sampled current voltammetry as described by equation

(5.4.22) applies also to polarography at the DME for a reversible system, as is the case in this

problem. This equation holds as long as the rate of the potential sweep is sufficiently slow that the

potential is virtually constant during the lifetime of a single drop. Equation (5.4.22) can be written
1 .

E=Eyy+ i log L

)
Thus, 2 plot of E versus log = should be linear with a slope of 0.0591/n V at 25 °C and an
intercept of E /5. From a linear regression analysis one finds

Slope = 0.0291 = 0.0591/n V

n = 2.03 = 2 electrons

Intercept = Eyjp = —0.417 V vs SCE

72 = (.9998 for this analysis.

(b). From equation (5.4.21), Eyj = E when Do = Dpg. To calculate the formal potential vs
NHE given the cell potential is calculated vs SCE, the problem can be set up as follows. Note EZ“
is the potential at half maximum current.
O+2 =R ? =E”
-(HgsCly +2¢ =2Hg +2CI")  -(0.242V) =EY vs NHE
0417V =E%, vsSCE

B n ~ Bgjigacn = Bon = 0417V

B = ~0417V + (0.242V) = ~0.175 V vs NHE

Pictorially, this would look as follows.

HegoCly +2e =2Hg +2CI-  EY =0.242V

1
2H* +2e=H, E% =0.000 V
0417V
O+2 =R EY = 0175V 1
Problem 7.3 The reaction under consideration is A + ne = B, where E4, = —1.90 V vs SCE,

1/2 =

the wave slope = 60.5 mV, and (I)max = 2.15. When C is added to the solution, the wave slope
does not change significantly from this value. From Section 5.4.1 (b), the wave slape refers to the
slope from a plot of £ vs log{(ig — 1) /], which, for a reversible system, should be 59.1/n mV at
25°C.
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(a). The wave siope in all cases suggeststhatn = 1.

(b). From equation (7.1.11)
(Dmax = 708DY? = 2.15 = 708DY{* )

Solving for D4 leads to D4 = (2.15/708)% = 9.2 x 107° cm?/s, which is a reasonable value for
an le reaction.

(¢). Following Section 5.4.4 (c), the shift of £ / with C suggests the interaction

G
A +pC =(AC,) K.= 5%

From equation (5.4.82) at 25 °C,

o Em_-—o"’;’llg}(ﬁ%ﬁ'ilogcg+90:ilog% @
From equations (7.2.1) and (7.2.3) and equation (1), one can write
1.4 = T08DY?m¥31Y8, = (Dmaxm®tV/¢ ®
Assuming that mm and ¢ are constant towards the end of the drop life just before it falls, then
ma _ Is _ 215 ®

mac, lac, lac,

which can then be substituted into the last right-hand term in equation (2). Iac, is tabulated as
(I)max in the problem for each concentration of C. A linear regression analysis of the data Ef/g”
log C2, leads to a slope = —0.0591p = —0.060. Solvmg for p leads to p = 1.02 = 1. A value of

= 1 indicates that the data are linear. Because E1 20 Cg, 14, and I 0, are given, the terms in
equauon (2) can be tabulated as follows.

EfC —Bf, (V) —00591logCp  0.0591log (14/Iac) K.
—0.25 —01773 1.474 x 1072 1.80 x 107
—-0.31 —0.1182 1.601 x 1073 1.87 x 107
—0.37 —0.0591 1.348 x 1073 1,92 x 107

K, is calculated for each O value. K& = 1.9 x 107 can be calculated from the last column in
the table. Thus, a diffusion coefficient and equilibrium constant, both thermodynamic quantities,
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can be calculated from the data. Species A is probably an alkali metal given the charge of A and
the small cavity in C.

Problem 7.5 The problem asks that an analysis for TI(I) in waste water be considered in the
presence of 10 to 100 fold excesses of Pb(Il) and Zn(II). In 0.1 M KCl the following )/, values
vs SCE are given:

By (TIH/Tl) = —046 V
By 2(Pb?*/Pb) = —0.40 V
Ejo(Zn*/Zn) = —0.995 V

From looking at these values, one can see that the Zn(Il) reduction is well removed from that
for either TI(I) or Pb(Il) and thus is not a problem in this analysis. However, the E,/, values
for TI) and Pb(II) are only 60 mV apart. Thus, the obstacle that would impede a polarographic
determination of this waste water sample is the closeness of these two E /; values. We know from
Chapter 5.4.1(b), Figure 5.4.1, that one needs to be at least 160 mV /n away from E /5 to be on the
diffusion limited part of a sampled current voltammogram. Thus, at -0.46 V, we are approximately
3/4 of the diffusion limiting current for Pb(II) while at the point of greatest change on the curve for
T+,

The question asks how this could be circumvented without resorting to separation techniques. One
way in which this could be done would be to use differential pulse polarography, setting the base

ial at the half-wave ial for Pb(Il), with AE = —10 mV. By using small increments
for AE, we should see §i decreasing for Pb(1I), and perhaps will see a maximum for TI(I) as the
potential continues to grow more negative. Alternatively, the cations can be complexed as discussed
in Chapter 5.4.4. Because TI* and Pb?+ have different charges, one would expect them to shift in
a negative direction along the potential axis, but by different amounts.

Problem 7.7 (a). A reversible sampled-current voltammetric wave is described by

nFADY?CS,
1) = ——2 -0 5.4.16
)= L) G410
where
exp |22 o
0=exp [RT (E—E )} (5.46)
One can write
di  dide
4E ~ a8 dE o

di nFADYCy ( ¢ ) ®

6~ ri(1+¢6) \" (1+0)°
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nF nF v nFg
&= (7)) -5 o

Combining equations (1) - (3) leads to

di _ nFADYChenFo __n*F?ADJCy ¢ @
dE ~  /mt(1+¢6) RT RTVmt  (1+€6)2

(b). From equation (7.3.19)

2
sie nFADY?Cy [ Pa(1-0%) 7319
V@ —7) |(c+Pa)(1+ Pao) -
where
o [P (5428 _ 0] _ gpexp |[PEAE]
PA—fexp[RT (E+ ) E )] = {fexp [RT 2 ] ={bo (7.3.16)
and
nF AE

o =exp "2 {7.3.17)
As AE — 0, the argument under the exp ial in ion (7.3.17) t iently small

that hm e* — 1+z. Thus, Py — £faso — 1+ F}i“j% ~ 1. Upon substitution into equation
(73. 19)

& =

nFADY “c'* Pa(1-0?
o ) ®

V(= (0 + Pa) (1 + Pao)

- HFADgZC’ e 1- 1+ H48)7

Valr =) |1+ R—“T+69) (1+e0 (1+374F)
_ nraDYCy ~$AE - (548)")
C VA=) ( +5% "E +€6) (1+£0 (1 + 345))
. nFADF*Cy -2 AE]
T VA7) <1+§€><1+se)
~ nFADJ’CY [

£ [—"FAE
(1+£6)?
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yields an expression which } ion (4) as AE — 0.

. 1/2 ve
8 ,, _n’F?ADJ Co[ £0 ] ©

BE " RIVa(r-m) L1+ 60y

59



8 www.Endbook. net
CONTROLLED CURRENT

TECHNIQUES

Problem 8.2 From the development in Section 8.4.2, the applied current will be expressed as

i(t) = if + S, (8) (4 — i) {1

The Laplace transform yields

i) = ‘;f TR [;”‘] (ir — i) e)

Then, upon substitution into equation (8.2.9) for x =0,

iy +exp[—st1] (4 — i)

Cr(09)= nFAD}elzsa/"’ ®
This inverts as
Cr(008) = s [11VE+ 50 () G = i9) V=T @
The reverse electrolysis time occurs when Cg (0,t) = 0 and ¢ = t; 4 7. Then,
iVl F T+ (i — i) VT =0 )
Ifr=t,,
iVBE + e — iV = (VE- 1) i+, =0 ©®

This is only true if 4, = — (\/5 - l) ip = —0.414ig, o1 ip /iy = —2.42.

Problem 8.4 Consider the reaction sequence

O+nme=X
X+nge=R

Fort < 71,42 = 0, so only O + ne = X need be considered. From equation (8.4.2) where z = 0,

mFAVD; [C—SQ - Co(O,s)} =B W
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Foriy = Bv3,
L _ BT
n= 54372 @
Att =11, Co(0, ) = 0, and substitution yields
Co _n _Bym
nFA\/ Dy PRy ¥ 3)
Inversion yields
mFAVDICH = —7'1 (O]
Or,
2m FAVDLCY
= "_1W7F_1_0 ®)
Bulk ion of X was g d at the el de surface for 0 < ¢t < 71. Fort > 71, Xis
consumed such that, consistent with equation (8.4.2),
T2
7 =nyFAVD: [— - Cx(0, s)} ©6)

Note that 72 = %ﬁ-
For t > 71, the total current ézotar = %1+ 3 OF Irotal = 31 + %2

Totat =T + %2 = % =mFAysDy [— - Co(0, S)] +neF AV sDa [ CX(O,S)J

7
Att =71+ T2, Co(0,8) = Cx(0, 5} = O and the above reduces to

fT‘//’_; - mmca\/g + nzFACZS\/ZZ—; ®
Or,
BT - £208 [ VDr + VD) ®
Upon inversion,
ATy = FAC [nl\/_-i-n D,] a0
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But, 71 = 203 FAY/D1Ch/B+/7. Thus,

_ 2mFAVDRCY

Tz = [N an

1f n1v/D1 = ngy/Dy, then 7y = 72

Problem 8.6 From equation (8.7.1), the charge on Cin; = 1 nF set by a 10 V battery is found.
Ag=Cinjx V=10 Fx10V=10"8¢C ()]
When Agq is distributed over Cinj = 1 nF and Cy = 1 pF, the charge is conserved such that
Ag=ginj +qa=10"°C @

Also, the voltage drop across the two capacitors must be equal. Thus,

Ginj 94 _ Ynj _ U ®
Cinj Ca 107°F ~ 10-6F

Solution of two ions in two unk yields gg = 9.99 x107° C and ginj = 9.99x 10712 C.
Thus, all of the charge is delivered from Cin; to Cy.

The total capacitance in the Figure 8.9.1 circuit is found as follows.

1 1 1
= ==+ =10° + 105 & 10°F ! 4
Cr G Cy @

Cr =~ 107°F ®)

The time constant 7 = BpCr = 100 @ x 10~2 F =~ 10~7 5. From equation (1.2.6), the current
for charging Cy drops to 5% of its initial value at ¢ = 37 and 1% of its initial value at ¢ = 57.
Thus, Cy is 95% charged in =~ 3 x 10~7 s or > 99% charged in ~ 5 x 1077 s.

Problem 8.8 From equation (5.2.18),

) . 1 1
1a(t) = nFADoC} [\/—w—D_;? + T—D] (5.2.18)

Substitution into equation (8.7.4) yields the following.

B(t) = E(t=0)+-clfd /tid(f)df )

63



WWW’*E’ﬁd‘BDok net

_ nFADoChH
= Be=0+—5 "> L [ = TD] dr @
. mFADCH[ 27 7]
= Et=0)+ o [—'—Tw = + TO]O 3)
_ o) . MFADOCS [ P ]
E(t=0)+ ———ch 7ot @

Then,
AE = E(f) - E(t = 0) = 3%—— vDot [1 + Y20 Eoot] ©)

Thus, a plot of AE/+/% versus /2 will be linear with a slope of n* ADoC% /roCq and an intercept
of 2nF ACHVDo/v/7Cy.

Problem 8.10 Barker studied the reactions of solvated electrons in acid solution. When no N2O

was present, €4, traveled into solution without reacting to produce a specnes which could be elec-
trolyzed at the electrode surface and the ial decayed ically as the e, di din
the vicinity of the electrode. When N2O is present in solution, the solvated electrons react to gen-
erate OH®. The radical is readily reduced at the electrode as it diffuses back to the electrode to
generate an additional electron transfer reaction and sustain the potential.
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9 METHODS INVOLVING FORCED
CONVECTION - HYDRODYNAMIC
METHODS

Problem 9.1 Information for the Rotating Disc Electrode (RDE):

ry=0.20 cm A=mr? =7 x (0.20 cm)? = 0.126 cm?
€4 =10"2M = 1075 mol/em® D =5x10"% cm?/s

f =100 rpm = 100 rev/min x 1 min/60 s = 1.67 rev/s

w=2nf =21 x1.67s 1 =105s""

v =0.01cm?/s

Ate=A"

(a). From equation (9.3.9),

v, = ~0.5lw%2 %2 93.9)
_ 051x (105 341)3’2 174, a
B ©0Lcm?/s)/T ~ ~ emxs® )
From equation (9.3.10),
v = 0512 Viry (9.3.10)
051 x (105 s71)*/? 174
= ( ) Y @

©0lcn/s) Y amxs

Aty = 1073 em and 7 = 0.2 cm, equations (1) and (2) lead, respectively, to vy = ~1.74 X
10~ cm/s and v, = 3.48 x 1072 em/s.

(b). At electrode surface, where y = Oandr = 0, vy = vy = 0.

(c). The values U,, i,c, m 4, 6 4, and the Levich constant are calculated as follows.

From equation (9.3.11),

U, = —0.88447 (wv)/? (9.3.11)
0.0lem?

12
A ) =-0.29 em/s

= —0.88447 x (ij X
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From equation (9.3.22),

ie = 0.62nFADY WM ™Y0C ©322)
2/3
0.62 x 1x 28485.C 0.126cm? x (%_m) 1 (10.581)2 x 102 gpa
- (0.01 cm2/s)™/®
= 1544
From equation (9.3.23),
ite
= —_——t
™A = LFAC ®
154 x 1076 4

- —3
05285 ) (0.126 ) (105 meljamd) — 127 ¥ 107" em/s

From equation (9.3.24),

6 = 24 @
ma
5 x 1076 cm?/s
- = 304 -3
1275 108 omys — o4 X 107 em
From page 339,
. e
Levich Constant = wl/—QC:, %)

154 x 1078 4
= RSV PP = 4.75 As'/2em® fmol
(10.5 s=1) 7% (105 mol/cm?®)

Problem 9.3 This problem is based on the data in Figure (9.3.8). From the Figure legend,

f = 2500 rpm = 2500 rev/min x 1 min/60 s = 41.67 rev/s

w=2mf =21 x 41.67 57! = 262/s Wwl/2=162s12

Au electrode, A = 0.196 cm? %, = 1.00 mM (saturated) = 1.0 x 10~3 mol/cm®
02 +Hp0 +2e = HO; + OH™ n=2

(a). The Do, in 0.1 M NaOH is found from the ¢ — E curve in Figure (9.3.8a), where 4;, ~

6.5 x 10~ A. From equation (9.3.22),

2/3 fe
Do, = QemFAA Ty, o
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(6.5 x 1074 4) (0.01cm?/s)"/®
(0.62) (2) (96485C/mol) (0.196cm?) (16.25~1/2) (10-Omol/cm?)

em#3
5273

3/2
Do, = [7.94 x 107* ] =2.2x107% em?/s @)

(b). The Koutecky-Levich equation (9.3.39) shows that a graph of 1/i; . versus w™/2 leads to an
intercept of 1/ix. From Figure 9.3.8, the intercept at 0.75 V is i~! = iz} ~ 1.2 mA~!. This
yields i = 8.3 x 1074 A. From equation (9.3.38),

%,
(B = i ®

83x107% A
(2) (96485C/mol) (0.196cm?) (10-5mol/cm?3)
2.2 x 1072 em/s 2t 0.75V

Problem 9.5 This problem is based on Figure 9.10.2, which features RRDE voltammograms for
the reduction.

Fe(CN)s~ +¢ = Fe(CN)g™
The data provided are as follows.
f=486rev/s
w=2nf=2n(48.6 s~) = 305 s* wh? =175 s71/2
C* = 5.0mM =5 x 107% mol/em®
7 = 0.188 ¢m = inner radius r3 = 0.325 cm = outer radius
3 — 13 = (0.325cm)® — (0.188¢m)® = 2.77 x 1072 cm®
T (rg - 7‘%)2/3 = 0.287 em?

v =0.01cm?/s y8 =215 cm~%/8/s~1/6
(). From Figure 9.10.2,
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ip (u4) iy (ud)

Curve (1) 0 = 1380
Curve (2) 302 ~ 1200

From equation (9.4.19),

(iR

N 9.4.19)
D
B 120044 — 138044\ _
= ( 30254 ) =060
From equation (9.4.5),
Y — iRc W
¢ 0.62nFm (r} — )P w2180y,
1.38 x 1034

0.62 x 1x 2485 5 0.987 cm? x 17.5 s~ 1/2x 218.am20  5x10- mol

= 427 x 107 cm?3/s3

3/2
Do = (4.27 x107* cm4/3/s2/3) 72 8.8 % 10-5 cm? /s @
(b). From equation (9.3.22),

e

i = 0620FADY o0y )

_ 302pA 1/2
= m—ﬂﬁu/}s

(¢). Values for ip . and ig . at 5000 rpm are found through the proportionality of equation
(9.3.22) between 4; and w'/2. Data from Figure 9.10.2 are used.

f = 5000 rev/min = 5000 rev/min x 1 min /60 s = 83.3 rev/s

w=2nf=2mx (83.3 rev/s) = 523.6 s~1 Wwl/? =229 571/2
) 22.9 571/
ipgc = 30204 x (m> =395 uA )
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NP 22.9/s2Y _

igye(ip = 0) = 1380puA x (———17.5/51/2 =181mA 3)
) o 22.9/s1/2
iRl (60 = iDyc) = 120044 x (m =157 mA ®)

Problem 9.7 Atw = 0, the Cottrell equation (5.2.11) holds, and for w > 0, the Levich equation
(9.3.22) holds. The ratio leads to

ia(t)t12 _ nFADZ Con—1/?
ifw T 0.62mFADYL-1/6C),

=098 p;Y/8 )

Experimentally, one must be sure that the Cottrell measurement is made under true limiting current
conditions and in the absence of convective effects.

The ratio assumes mass transport limited electrolysis and the same double layer phenomena are ap-
plicable to both measurements; there are no heterogeneous or homogeneous kinetic effects. Since
one is a steady-state measurement and the other a transient measurement, this cannot be the case.
However, the method is reasonable for cases where there are no kinetics and the chronoamperom-
etry data is taken for t > 4R, Cy, so that double layer effects do not interfere.

Problem 9.9 From the discussion in Section (9.3.6), the lower rotation limit is

w > 10v/r? &)

where r is the radius of the disk. For v = 0.01 em?/s and 7, = 0.1 em, w > 10 s~1. The upper
limit for w is governed by the onset of turbulent flow such that

w<2x10°v/rt <2x 10° 571 )

In practice, however, the upper limit is frequently at 10,000 rpm or w a 1000 s~*. Therefore, the
range of w in RDE is 10 s~! < w < 1000 s™2, corresponding to times of I ms < ¢ < 0.1 s.

From Figure (9.7.1), this corresponds to a range of UME radii greater than or equal to 10 um.

Stationary UME'’s can be extended to even shorter times than a RDE at its maximum useful rotation
rate. Referring again to Figure (9.7.1), one can see that UME’s with radii less than 5 um correspond
to mass transfer rates (and hence shorter time scales) that are much greater than can be achieved
practically with RDE’s.
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10 TECHNIQUES BASED ON

CONCEPTS OF IMPEDANCE

Problem 10.2 The analogous problem of converting a series circuit to its paralle] equivalent is
outlined in the first edition on page 348. For components in parallel, the reciprocal of the total
impedance is the sum of the reciprocals of the individual impedances. See Figure 10.1.12. Fora
resistor, the impedance is R; for a capacitor, it is [jwC) ~1, For the parallel network,

1 .
% +jwCyp o

For components in series, the total impedance is the sum of the individual impedances.

N~

1
Z=Ro+ e @

Or, upon taking the reciprocal and noting 1/§ = [~v/=1v=1]/v~-1 = —v/~1 = —j, equation
{2) can be written as

1 1 wCs wCy

i:R,+j71@=uR,c,+§=wR,c,—j ®
Multiplying the and & i by the 1 of the d i yields
1__ WO wRCit]  wCi(wRiCy+ ) @
Z wR,C,—j wRCs+j (WR,Cs)? +1
For simplification, let W = (wR,C,)Z,

The final step is to recognize that the real parts in equation (5) correspond to the real parts in
equation (1) and imaginary parts in the two equations also correspond. Thus,

1 Ws
R, " RWs+D) ®
wCs
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Or,
o Ws+1
Ry = RS ®
G = Cpt— 9)
»=Copa T ¢

The conversion from a series to a parallel network develops similarly in that the reciprocal is taken
of equation (5) and the real and imaginary parts are equated to the corresponding parts in equation
(2). As outlined in the first edition, for W, = (wR,Cj)? this will yield

__ B
R'_Wp+1 a0
W,o+1
Co= Gt an

P

Problem 10.4 (a). The approach to this problem is outlined in the first edition of Electrochemical
Methods, page 348-349. Consider the circuit in Figure 10.1.14 where Ry, is in series with parallel
components of Cy and the faradaic impedance, Z;. The faradaic impedance is represented as a
series RC circuit where the elements are R, and C.. If Z; is isolated from Rq and Cy, then
R, and C, can be determined. The trick is to note that for resistors in series, the total resistance
is the sum of the resistances; for capacitors in parallel, the total capacitance is the sum of the
capacitances. Rg and C; can be eliminated by first considering a series circuit (to eliminate Rg)
and then a parallel circuit (to eliminate Cq).

First, consider R which is composed of two components, Rq in series with the parallel element.
As this is a series circuit, the measured resistance Rp can be expressed as Rg = Ro + Rz where
's is the resistance of the parallel element. Thus, the solution resistance can be eliminated as

Rp=Rp—Rq o
Second, this leaves a parallel circuit where Cy is in parallel with the faradaic impedance. The series

values (R'z and Cp) can be converted to parallel components following the equations developed in
Problem 10.2 and outlined in the first edition on page 348. For W = (wRC)® = (wR3Ca)%,

W+1 W+1
o el
- Y
% = W+l W+1 @

Then, the double layer capacitance is eliminated as

€y=Cp -G @
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Third, the faradaic impedance remains in a parallel arrangement. It remains to convert the parallel
form o the series form. Equations are provided in Problem 10.2 and on page 348 in the first edition.

For W, = (“’Rﬂcz':)z'

. B

R = 1+W, ®
a1t W,

C, = G, W, ©)

Finally, the phase angle is calculated from equation (10.3.9). Note that radians are converted to
degrees by multiplying by 180° /7.

et ] = L
¢ = tan [wR,C’,] = arctan [wR.C,] (10.3.9)
Values and the correspondi jons are tabulated on the next page. R, = 10 ©; Cg = 20.0 uF.
eqn. w
49 100 400 900
Rp [(9)] 1461 1216 63.3 30.2
Cs (uF) 2908 1586 414 256
Ry=Rp-Rqy (@) 1 1361 1116 533 202
W= (wR};CE)Q 3761 3133 0779 0217
R, © @ 1723 1472 1217 1135
Cp (uF) 3) 61.1 384 233 21.0
Cp=Cp—Cd {uF) @ 411 18.4 33 1.0
W, = (wF\’.,,C}’,)2 0.120 00732 0.0254 0.0113
R, ©@ (G 1538 1372 1187 1122
C, WF)  (6) 3826 2695 1323 931
WwRCa " 0347 0271 0159 0.106
é (rad) (103.9) 0334 0264 0158 0.106
¢ (deg) (1039) 191 151 905 607

(b). Plots of R, and C, versus w12 will be linear and yield Rt and ¢.

Ry=Ra+ ﬁ (10225)
1
C=—m5 (10226)
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180 500
160
140 £ p A0
120
g 100 g
g 3
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Markers: R, (¢#) and C, (o)

Relevant definitions are provided by equations (10.3.2), (3.4.6), and (10.3.10).
Ra= % (1032)
ip = nF AR C oy (3.46)
o= n”ﬁiﬁ \/FZC;; + \/Dlzc;, (10.3.10)

Regression analysis )'ields R, = 99.6 + 378/w/? = Ry + o/w'/? and C.(F) = 2.66 x
103 /w'/? = 1/ow!/2. Thus, Ry = 99.6 Qand o = 378.

Equation (10.3.2) yields

. _RT _0.02569V _ "
0= Fr = e —28x1074 U]

Itis given thatn = 1, A = 1 em?, and C = Cg, = C* = 1.00 x 10~ mol/cm?, such that from
equation (3.4.6),

o

¥ = TFacr ®
2.58 x 1074 A

96485 C/mol x 1 cm? x 1.00 x 10-8 mol/cm3

=267 x 1073 cm/s

74




www.Endbook.net="

From equation (10.3.10),

V2RT
VD = on2F2AC* )
_ V2 x 0.02569 V
= 3780/s/% x 96485 C/mol x 1 cm? x 1.00 x 108 mol/cm®
= 996 x 107 cm/s*/?
D = 992x107" cm?/s
Problem 10.6 The two equations to consider are
Ret
Zre = R + ——t 10.4.9
e T Y (WCaRa) (1049)
wC4sRY
Iy = ————3 10.4.10
™ 1+ (WCaRa)? ¢ )
Solve for w by noting that
2 __Ra _wCiRly
1+ (wCsRa)" = T Rn - 7n 1)
Or, from the second two terms on the right hand side,
Zim
W —_—— 2
e (Zre — R @
Equation (10.4.10) is rearranged to yield
wC,
(wCiRa)? - WGila )¢ (6]
Zim
Substitution of equation (2) yields
Zwm Re
(Zm—Rn> vy @
2~ Ree|Zrs ~ Ro] + [ Zne = Ral® = 0 )
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Note that
2 2
(0o~ Ro~52) =200~ Rel? — R[22~ Rl + 22 ®

Substitution of equation (6) into equation (5) yields equation (10.4.11).

(ZRe —Ra- %“‘-)2 +2h, = _1%2,_ (10.4.11)
Problem 10.8 From equation (10.3.9),
¢ = tan™! %} (1039)
where
o= n’}ﬁi\/i [\/Dioca + \/D_;CZ;] (10.3.10)
Ry = %Ta (103.2)
io = nFARCHCye (3.4.6)

It is given that k° = 2.2+ 0.3 em/s, @ = 0.70, Do = 1.02 x 1075 em?/s, n = 1, and
T =295+ 2 K. Forn = 1, substitution of equations (10.3.10), (10.3.2), and (3.4.6) into equation
(10.3.9) yields

RT. 1 1
" AVE [71300,; + 275,10;1]

¢ = tan_] RT RT 1 1 (1)
FrFARCTSCy T omave [_\713005 + 17"Dac;,]
0 r+(1—), 1 1
= tan™! KCo " CF [73505 +7!Tn"ca} ]
+(1-ar)
VI + KOS 03 [ ok + Jpber |
Let C4 = C} = C* and Dg = Do.
2k°
=tan™t | VDo 2
oo [l @
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It is given that 0 = 2.2+ 0.3 em/s, & = 0.70, Do = 1.02 x 1073 em?/s,and T =295+ 2 K,
such that £°//Do = 688 s~ 1/2. For several decades of w, ¢ is tabulated below.

w/2m w ¢(rad)  $(deg) W2 ot
10 62.8 0.7813 44.77 793  1.008
100 628  0.7727 4427 2507 1.026
1000 6283 0.7463 42.76 7927 1081
10000 62831 0.6718 3849 250.66 1.258

For reversible reactions, ¢ = 45°. For k& = 2.2 & 0.3 cn/s, the reaction will be reversible at low
frequencies, as is consistent with the data in the table where ¢ — 45° as w decreases.

A plot of cot ¢ = 1/ tan ¢ versus w'/2 is shown. Note that B = Ej/, = EY when Do = Dp;
then, k¥ is the operative heterogeneous rate. For these conditions, equation (10.5.25) applies, and
it simplifies as shown for D = Do = D where B=1-o.

8 a2 172
[eotglg, = 1+ Dobg |~ w” (10.5.25)
Ei2 2 %0
_ pi2 12
= 1+\/§k_nw
1.30
- 120§
k-]
® 1101
100 B

0 50 100 150 200 250 300
o' (s

Regression yields cot ¢ = 1.03 x 1073w/2 4 1.0000. The slope = /D/2/k®; for the values
here, \/D/2/k° = 1.03 x 1072 s1/2.

Consider Figure 10.3.3, which shows the real and imaginary vectors that define the response for
a quasireversible electron transfer. The real vector, measured along the same vector as E, for
a phase angle of 0°, is Rey + o/wl/ 2, The vector 90° out of phase defines the imaginary term,
o /w‘/ 2 The ratio of these two terms defines cot ¢. From equation (10.3.9),

Ret + 0’/«)1/2

oJal2 ®

cot¢p = wRsCy =

77



w= NIRRT ETTTO O et

Thus, the ratio of a current measurement on the real axis made at 0° displacement with respect
to E,. and a second current measurement 90° out of phase (quadrature current) will yield cot ¢.

Note that this assumes effects from p d solution resi and double layer charging
are negligible.
To make a good of k7, the freqy must be high enough that the measured value

of ¢ must be less than 45°, As above, this condition is favored by higher frequency (faster mea-
surements). Here, frequencies greater than 10 kHz are needed to reduce ¢ by at least one degree.
Commercial instrumentation is available that generates frequencies of 20 MHz.

Problem 10.10 Consider the circuit in Figure 10.9.1a. The data are to be plotted, as shown in
Figure 10.9.3, as
1 1

T 0o

The objective is to find the impedance for this circuit and to consider only the real part of the
impedance, as is consistent with data in the form of Z(c). The needed impedance expressions are

as follows. For parallel p the reciprocal of the total imped. is set by the sum of the
reciprocal impedances. For a parallel resistor (&) and itor (C}y), the imped is expi d
as

1 1.

b +jwC) (1)

For components in series, the total impedance is set by the sum of the impedances. For a resistor
(R;) and capacitor (C.) in series,

1

Z = R,+m @
_p_d
= R~ ©)

According to Figure 10.9.2 and the discussion on page 412, the values of R, and Cj are found
from the high frequency data. It will simplify the analysis if these circuit elements are collected
with the total impedance.

First, consider the circuit shown in Figure 10.9.1b as a series circuit where R, is in series with an
impedance Z3p set by the three parallel components, Cy; Ry, in series with C/;and R, in series
with the parallel components, Cy,, and R,,. Then,

Z=R.+7Zy 0]

Zp=2-R, ®
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Second, it is now possible to consider just the three parallel components. Decompose this circuit
into two parallel impedances, one set by C4 and the other by the remaining two branches, denoted
as Zgp. As Cy and Zyp are in parallel, Zyp is found from the sum of reciprocal impedances.

1 1
—— =jwCy+ 5— 6
T JjwCy Zar ©)

Then, upon substitution of equation (5),

1 . 1
7 R —JwC¢+Z—2p @)
Or
1 i
7 R = jwCq = Zan ®)

From the discussion at the bottom of page 411 through page 412, the resistor R, has only a real
component, but the other dent on jw) and thus have real and imag-

inary parts. For the real part, d denton o, the ion (23) t
1
Zaplo) = — ©)
Zo)-R ~ 7

The data plotted in Figure 10.9.3 are of this form.
It remains to reduce the circuit characterized by Za, to a series RC circuit. Consider the branch

composed of a parallel component of Cr, and Ry, in series with R,. First, reduce the parallel
components of R, and Cp, to an impedance Z,, as

+ jwCrm (10)

Or, upon taking the reciprocal and using the complex conjugate to segregate the real and imaginary
parts,

R

I = TGt av
Rm 1= jwCnRm
1+ jwCpmRm 1 — jwCnmRm

Rm . wCmRL

1+ (@CnBm): " 1+ (WCmBm)?

(12
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The circuit is now of the form shown below.

R, R, c

AAA—AA——f——

The impedance Z,,, is in series with Ry, such that

Zp = ZntRy 3)
R+ By [+ (@CnRom)?| = juwCin B,
1+ (WCmBm)?

Consider the branch composed of R, and C}, in series. The impedance of this branch, Z, is set as

1
Z, = RL+ju)—G£ (14)
1+ jwCiR,
- eos o

The circuit is now in the following form:
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The imped: Z3y is composed of the two comp Z}, and Z},, such that
1 1,1
ST 16
Zw 7. Zh (16)
_ jwCl 1+ (WOmBm)?

- o+
14+ 5wCeBy " Bt Ry [1+ (@CrnBin)’ | = juCin Sy

14 (@O Bim)? + @ OO B + 5w [Ch (R + By [1+ (WCmBim)’]) + Culfle (1 + (WOmRm)*)]
T B+ Ry [1+ (WCmBm)"] +w2C4R4Com R + j [C4R, (R + Ry [1+ (WO Rm)?]) = CrRZ,)
1+ (@CmBm)’ + W CoCr B + jwCt [Rm + Ry (1 4+ WCmRm)’] + Ry (1 + WCrmBm)?)]

= R+ Ry [1+ @OnRm)?] + @2CaRCrn R + jo [C4Rl (R + Ry [L + (WCmRen)?)) = CrnFRB1]

To simplify, let X =1+ (wCpnRm)?.

1 X +w?CLCnR2, + jwC. [Rm + RpX + RLX] an
Zap  Rm+ BpX +wPCLRLCnRE + jw [CLR) (R + RpX) — CmR2)

Or, with application of the complex conjugate to break Za, into the real and imaginary parts,

2, o Emt BpX + PO RCnRE +jw [CuR (B + RpX) = CuBR] (o
*® X + 2CLCRE, + jwCo [Rn + RpX + RLX)|
Xt WO RE, ~ jwCl [Rm + RpX + Ry X]
X + W2C,OnRE, ~ jwC, [ Rm + BpX + RyX]
[Bm + BpX + ?CoRCm R [X +w?CiCmR2 ]
[X +w2CLCnRE)? + wiCR Ry + Ry X + R X
WG [C4 R, (B + BpX) = CmPB] [Bm + BpX + R X]
U X+ W CLCn B + W2C2 Ry + RpX + RLX]
. [Cufty (Ren + RoX) — CrmBL] [X +*CLOnRY ]
X + PCLCARE + W2C2 (R + BpX + BLX]
Gl (R + RpX + By X] [Rm + BpX + w?CuRLCm 2]
X + w2CLOn R +w2C2 Ry + RpX + RLX) }

(Use of Maple does not simplify this expression to any more tractable expression.)

Now, Zgy is the impedance which can be viewed as a resistor and capacitor in series, as exemplified
by equation (3), where

1
Zyp = Rop+ —=— =

A
GwCay Bap wCy as)
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[Bm + BpX + w*CLRLCmRS] [X + w?CLOmBE ] + w*C} [CLR, (B + RpX) — CmB2] [Rm + RpX + RLX]

Rap = X & PCLCRE + 02 (R + R X + FLXI
(20)
P | [X +02CiCmB)* +w2C2 [Rm + RpX + RLX)?
= T [CL R, (R + B X) < G B2, [X + w2C,Crm B2, | — Cf (R + BpX + R X] [Rm + RpX +uzc;R:.(cm)RIf..]

The dlscussmn on page 412 for a series resistor and capacitor shows that the real part of the
i is d by equation (10.9.8), as modified for this circuit.

P P

1
2 = R .
2p(0) = Rgp Coo (22)

From equation (9),

S Zap(0) = R; ! 23)

TR L = —0Ca % 2+ [
Thus, the plot shown in Figure 10.9.3 yields a slope of C,’lp1 and an intercept of Ry, where Cop
and Ry are series capacitive and resistive el that ch ize the branches of the circuit
that characterize adsorption and charge transfer.
From the text, the high fr h: izes R, and Cy. For the low frequency re-

24
sponses, equations (20) and (21), where asw — 0and X — 1, yield

Ryl  =Rm+tRy (24)

Cy 0 ® 25)
Thus, at low frequencies, Za,(0) is set solely by the resistive components in the branch described
by Zj,. This is appropriate because at low frequency, the capacitors charge and in the limit of
lowest frequencies, they pass no current; the only conduction possible is then through the series
resistors, R, and R,,.

At intermediate fre ies, a complex bination of C;, R}, Ry, Cp,, and R,;, are dependent
on w. If; as found by Pilla and Margules, the adsorption is rapid as compared to the charge trans-
fer required to compensate the charge change associated with adsorption, the expression for Zo,
simplifies to

+R X | CnRZ
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11 BULK ELECTROLYSIS

METHODS

Problem 11.1 In this problem, Sn?* is titrated with I, using one-electrode amperometry. At the
following fractions, the species in solution are as follows:

f Species in Solution at the Start of the Titration Conditions

0 only Sn?+
0.5 Sn?t, Sntt, 1~ [Sn®*]=[Sn**] and [I~]=[Sn**]
1.0 Snit, I~ [I]= 2x[Sn*+]
>1 St I, 1y [I-]= 2x[Sn*+]

The i — E curve below is shown at different fractions, £, of Sn* titrated.

i 1
e 1
1
1

f>1

Sn#* + 2e - Sn2+

f>1
|2+2e=~2" =ﬁ=1 /

0.6 o.z_/ -0.2 -0.4 ~06
1
. 1
1

Sn2* - S+ 2e E vs SCE

|
1
|
1
I
1
1
1
1
1
1
1
1
i
1
1
1
|
T

2=l + 2e

1
1
1
i

A platinum electrode held at the potentials listed will respond to the corresponding half-reactions:

Electrode Voltage (V) Half Reaction
(a) +0.2 Ip+ 2¢ = 21~ and Sn* = Snit + 2e
®) 0.1 I+ 2e = 21
©) -0.4 Sni* + 2e = Sn?t and I+ 2e = 21~

These potentials are indicated on the ¢ — E curve with dotted lines, The titration curves are shown
below.
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[C]

-04Y
(b),
Zo.1v
H f
i
1
E
+02v '
H
Problem 11.3 In this problem the use of one-el de p i y involves the

of the potential of an indicator electrode with respect to a reference electrode with a small cathodic
current applied to the indicator electrode. In two-electrode potentiometry, a small constant current
applied between two polarizable electrodes should be the same at the anode and the cathode. In
problem 11.1, Sn?* is titrated with Ip. Shown below is the i — £ curve at various fractions with the
impressed anodic and cathodic currents shown. In order to draw the titration curve, one needs only
to look at where 4. and 4, intersect the i — E curve and extrapolate down to E (for one-electrode
amperometry) and AE (for two-el d y) on the corresponding f curves.

Sn* + 2e - Sn?*

I
1
I
|
)
1
I
1
|
|
I
1

£>1
I+ 2e 20" U .
n IV ol —— T
t+ + — I
0.6 0.4 4 -0.2 ~04 ~06 i

">l + 2e Evs SCE

i
|
| i
) i
i i
i i

Sn2* o Sntte2e |
1 i
1 I
i i
i I
| i

The titration curves for Sn2" titrated with I are shown below. For the one-electrode titration, £
for an impressed i was used.
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E © One electrode

AE Two electrode

0.5 1.0

The shapes of these two titration curves, for the case where one of the redox couples is not re-
versible, differ from those shown in Figure 11.5.3 (Edition 2) and Figure 10.5.4 (Edition 1).

Problem 11.5 (a). At the Ag clectrode,

Ag+I- — Agl+e up to 100%
Ag— Agt +e > 100%

[~]= 1.0 x 10~3 mmol/mL
mmol I~ = 1.0 x 1073 mmol/mL x 50 ml=0.050 mmol

From equation (11.3.11),

Q = nFN, (113.11)
1 x 96485C/mol x 5.0 x 10™%mol = 4.8, C

Thus, for
t=100s i=48.2mA
t=200s i =24.1mA,etc.

According to typical applied current ranges and titration times cited on page 433, iap, & 48 mA.
over 100 s would be suitable.

(b). The i — E curves at a rotating Pt electrode would look as follows:
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E (vs SCE)

12
By

v removed 77
from solution ¢

! ’
¢
i
]
I
1 I"=l3”

(c). The amperometric titration curves are as shown below

i
Two electrode

Problem 11.7 The assay of a uranium sample can be abbreviated as follows:
O]

Usampic 225 UOZF 720 3+ On, i

(8). After treatment (3), where U3+ 2% U+, the solution contains [U4+] = 1 mM. The following
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species are also added:
[Fe**] = 4mM [Ce“] = 50 mM [H2804) =1M
The goal is to sketch the ¢ = E curve at a Pt rotating disk electrode from —0.2 V to +1.7 V vs NHE.

The ing half- are idered. Note that for reaction (4), the potential is calculated
as outlined in problem 2.10.

U0 +e = UOF EY =005V vs NHE (]

UOF +4H* +¢ = U™ +2H,0 Ef =062V vs NHE 3)
0" o'

vogt +amt+2e = Uramo By =Bl _ossvesneE @

Fe*t +e = Fet EY =077Vus NHE (5

UM +2H0 = UOZ +4H' +2¢ ~ E° = —0.335 V vs NHE (6)

2FeST + U +2H0 = 2Fe?t + UOZF +4HY ES, =0435Vvs NHE  (7)
Ce'* +e = Cet E° =144V vs NHE ®)

2H* +2e = Hy E” ~ -0.359vs NHE ©)

Note that the reduction potential for hydrogen is taken from the potentials shown in Figure 11.10.1.
Based on equation (7) and equation (2.1.29),

nFEZ,  2x96485 ;S x 0435V 10
RT 831441 2 x 20815 K
Kegn = 5.1 x 104

InKrgn =

which demonstrates that the equilibrium of reaction (3) is strongly favored from left to right. Thus,
for every mol of U*+, 2 mol of Fe®* are used up, 2 mol of Fe?*are produced, and 1 mol of UOZ*+
is produced. After mixing, the key solution components are

[F) = 4mM —~2mM =2mM
[Fe**] = 2mM

0

1mM

[ce*t] = 50mm

S
=]

3’3
[
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The i — E curve would look as shown below. Note that the kinetics for UO3*/U%* are slow and

the reduction wave occurs outside the potential window.

(U0 24+ 4H* + 26" > UH

2H,0)*

i
%—a H2

Fe3*— Fe?* [
‘ , "

4

0.5
Fe?*— Fe®*

Ce3*— Cet*

+ U0,24/U* is somewhat irreversible a

-05
E (Vvs NHE)

nd occurs at more (=) E

(b). The chemistry is outlined in part (2). The coulometric titration will involve the oxidation of
Ced*+ — Cel+ at a Pt electrode followed by the reaction Ce** + Fe?t — Ce* + Fe?+.

(c). For the following stages in the titration, the concentrations are

Percent Titrated Iron Species Cerium Species
0 LFe“] = [Fe?*] =2mM [Ce3*] = 50 mM
50 Fedt] = 3mM; [Fe?] =1mM  [Ce*t] = 0mM; [Ce®*] =50 mM
100 Fedt| = 4mM; [Fe?t] =0mM  [Cett| = 0mM; [Ce®+] = 50mM
150 Fe3tl =dmM; [Fe?t| =0mM  [Ce?*| = 1 mM; [Ce3t] =49 mM
i
150
100
50
=
50 _/f+0.7 -0.2 £ (Vs NHE)
9 Fe?* — Fe®*
Ced* 5 Cet*

(d). Amperometric titration curves
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+03V
i / +0.9V
f
2-electrodes
AE = 100mV
i
|
:
! f
(). Nulil current potentiometric responses
i
|
+1.3
E +1.1
(Vvs NHE)
+0.9 A
]
+0.7 :
1.0 f

Problem 11.9  Three potentials were chosen:
0.0 V, which is in the vicinity of the Fe3* + ¢ —Fe?* reduction
0.9 V, which is in the vicinity of the Fe>+ —Fe3* + ¢ oxidation and the Ce** + e — Ce3+ oxidation

1.7V, which is in the vicinity of the Ce®* — Ce** + ¢ oxidation
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<
L

0V {or-0.1 < Eappl < + 0.6 V vs SCE)

® ,r;)

>” + 0.9 V(or 0.85 < Eappl < 1.0)
%
-

P e g/n]v L
101® o~ f

The solid line denoted as (a) corresponds to the situation where the mass transfer coefficients for all
species are equal whereas the dashed line shown as (b) corresponds to the situation where the mass
transfer coefficients for iron ions are 25% larger than those for the cerium species. The increase in
the titration curve is greater after f = 1.0, corresponding to the first appearance of the Ce** + ¢
— Ce¥* reduction wave. The titration curves most useful in a practical titration are those at 0.9 V
because the endpoint at f = 1 is clearly at zero. Note that the solid lines corresponding to equal
mass transfer coefficients have invariant slope. Thus, they are not useful in finding the equivalence
point.

Problem 11.11  The constants given in the problem include:

V=100cm®=01L

[M*] = 0.010 M = 1 x 1075 mol/em?

A = 10 cm?, rotating disk electrode

Qim = 193 mA

i = constant = 80 mA

(a). Ati =80 mA,
80 mA
193 mA

or, one can use equation (11.3.1) and solve for C3(t) to calculate

Cpp = x 0010 M =41 x 1073 M o

. 4(t) 80 mA _3
Co(t) = = =4.1g x 10
6) = AFAm, ~ 7% 9618 5 x 0amd <001 & — v XN0TM @

where the value for m, was calculated in problem 11.10.
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®)-

moles electrolyzed = (0.010 M —4.1 x 1073 M) x 01 L =585 x 104 mol  (3)

5.85 X 10~*mol x 96485C/mol _

t(sec) = 0% 1054 7063 @)
(©). Q@ = 5.85 x 10™* mol x 96485 C/mol = 56.4 C
(d). From equation (11.3.6),
CH(t
%0 _ exp [—pt] ®)

C5(0)

From problem 11.10, p = 10~3 s*. At this point, C§(0) = 4.1 x 10~% M because this is the
concentration after 706 s. The time required to go from this concentration to 0.1% of the original
bulk concentration or C3(t) = 1073 x 0.01 M = 10~% M. Thus, from equation (5),

C(t) _ 1073 x 0.010 M
CH(0) ~ 41x103 M

= exp [-107%] O]
Solving for time ¢ leads to t = 6016 s.

(€). The total charge passed is calculated as follows.

Q =80 x 1073 A x total time = 80 x 1073 A x (6016 s + 706 8) = 538 C (@)

From problem 11.10, the total charge passed for Mt reduction was found to be 193 C. From
equation (11.2.18), the overall current efficiency is

Overall current efficiency = QQ' x 100% =

total 5

lgg C o 100% = 36% ®

%

Problem 11.13  Consider a solution ining two reducible sut O, and O, at concen-
trations C{,‘ and c‘;,z, respectively, where the reversible reduction O; +nye = Ry occurs first, and
then, at more negative potentials (e.g. 500 mV ion), the reversible reduction Oz + nge =
Rg. This solution is sandwiched in a thin layer cell of thickness { where there are two working elec-
trodes, such as described in Section 11.7.2. The time of the experiment is much longer then I2/D,
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so that mass transfer can be ignored and only electrolysis is important. From Faraday’s Law, the
moles of O, electrolyzed are

t

K
moles of Oy electrolyzed = m;F m
so that the O; concentration at time £ can be expressed as
it
Co,(t) =C5, - @

mFV

where V, the volume, is the product of the electrode area A and the cell thickness !. The concen-
tration of the reduced species R is then given as

On()= 7 ®

Substitution into the Nemst equation leads to

RT , Ch, —it/mFV

E=E" +nl——Fln-———-—it/n1FV

@)

The transition time occurs when the numerator equals zero, thus, causing E — 00.The transition
time, 71, for the first species, O1, is then

. mFAICEH,
iy = O
71

(&)

For the second transition, the total current is set by ¢ = ; + i3 and the transition time 7 is set by
the sum of the transition times for the first and second reactions. That is, 7 = 71 + 79, where 71
corresponds to the transition time for O; and 72 to the transition time for O¢ since the transition
for O;. Thus, by analog to Section 8.5 for a two-component semi-infinite system, the total applied
current is

i=d+ig=

mFAICy, | mFAICS, ®
T T

Equation (6) can be recast as

i(T1 + 72) = FAI(m G, +naCy,) @

Equation (7) demonstrates how the transition times depend on the geometry of the thin layer cell
and the components of the cell solution. This equation is to be compared to equation (8.5.6) for
the semi-infinite case of a tv p mixture. Similar to the semi-infinite case, as long as the
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i — E waves are well-separated, the total current is simply the sum of the individual currents. The
differences arise at the boundary, where the thin layer cell has a boundary set by the thickness Z,
where as in the semi-infinite case, one of the boundaries is essentially at oo, Thus, in the semi-
infinite case, mass transfer occurs by diffusion and there is a DV/2 dependency. In the thin layer
cell considered here, under conditions of total electrolysis, there is no mass transfer and thus there
is no diffusion coefficient dependency.

Problem 11.15  As deposition time increases, the stripping wave becomes more and more asym-
metric with rounded humps developing in the 7 — E curves. Based on the article by Laitinen and
Watkins (4nal. Chem. 47 (1975)1352), these humps appear to be due to the reduction of fractional
monolayers of AgBr directly attached to the Ag surface. These monolayers would become thicker
as deposition time increases, thus leading to the stripping waves observed in Figure 11.10.2.

The main problem present in a voltammetric stripping analysis, such as the one presented in this
problem, is that it is assumed that there is a direct proportionality between the stripping peak current
and the amount of AgBr electrodeposited. This is generally an invalid assumption because the peak
shape is a highly variable, especially for small deposited quantities. One can overcome this problem
by measuring the chronocoulometric charge rather than the peak current. In chronocoulometry, it
is possible to unravel diffusion from adsorption processes using the procedure in section 5.8.

Problem 11.17 At an HMDE equation (11.8.1) can be used to calculate C;,, where it is assumed
that the deposition potential is such that ig = ip.

Additionally, a typical HMDE radius 7,0f 0.1 cm is assumed. Thus,

igta 10=% A x 5 min x60 s/ min

b = = =871 x 107" mol/em® (1
s = oFiaf3yers 2% 96485 =2y x (4/3) x 7 x (0.1 cm)? x 107" mol/em® (1)

For Cy; and ip = 1 pA at v = 50 mV/s, a spreadsheet can be constructed to evaluate equation
(11.8.3) for the diffusion coefficient Dys. A value of Das = 1.60x 10~8 em?/s is found. Equation
(11.8.3) can then be used to calculate the peak current at sweep rates of 25 and 100 mV/s. Values
of i = 0.708 pA (v = 25 mV/s) and 1.42 pA (v = 100 mV') are found.

To calculate 4, at an MFE, one can refer to equation (11.8.5)

. n*FRIAC},
b= —grEr (11.8.3)

and note the linear dependence of 4, on sweep rate and Cj;. Thus, to calculate 7, at sweep rates of
25 and 100 mV/s one can use the ratio

™ %5 my/s )
$S0mV/e = 50 mV/s @
P

y 25mV/s _ |

25 mV/s _ 50mV/s _ -

ip omV/s X i 0.5 x 25pA = 12.5 pA €]
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Similarly, at a sweep rate of 100 mV/s,

. v, 100mV/s _ .
100 mV/s 50 mV/s _ -
ip = Somv/s X i =2.0x 25 uA =500 ud @

If the rotation rate of the electrode is doubled from 2000 rpm to 4000 rpm, an increase in the peak
current would be expected through the Cjy variable in equation (11.8.5) during the deposition
period; i.e. when the rotation rate is doubled an increase in the amount of Pb deposited into the
MEE can be expected. From equation (9.3.22), this increase will be approximately /2 times that

at 2000 rpm so that a peak current of approximately
44000 T g 20 TP ¢ 91/2 = 95 uA x 1.414 = 35.4 pA ®)

As film thickness increases, thin layer behavior is lost, being replaced by semi-infinite linear diffu-
sion behavior such that 4p o< w1/2. According to Figure 11.8.4 (a), as the film thickness increases,
the peak current i, decreases in magnitude for a given sweep rate. Moveover, diffusion depletion
sets in so that the stripping peaks are broader and less sharp than in the true MFE counterparts.
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12 ELECTRODE REACTIONS WITH

COUPLED HOMOGENEOUS
CHEMICAL REACTIONS

Problem 12.1  This problem looks at how the cyclic voltammogram for an E,CE, reaction changes
as the time scale of the experiment is varied through the sweep rate. There will be two sets of
oxidation-reduction waves: the first corresponding to the reduction A + e = B, and the second
(which occurs after the homogeneous reaction B — C) corresponding to the reduction C + ¢ = D.
First of all, referring to Figure 6.2.1, approximately 200 mV is needed to traverse a linear sweep
wave. Thus, at a sweep rate of 50 mV/s, the time required to traverse the first peak is about 4 s
or 40 half-lives, so that all of B is converted to C through the homogeneous reaction leaving none
to be oxidized on the reverse scan. Because all of B — C, the reduction of C + e = D results in
a reversible cyclic voltammogram. At a sweep rate of 1 V/s, the first peak is traversed in approx-
imately 200 ms, corresponding to two half-lives of B. Thus, not all of B is lost to the following
homogeneous reaction and a slight peak current is observed on the return sweep. The second wave
is still reversible, but the peak heights are smaller than at 50 mV/s. Ata sweep rate of 20 V/s, the
time to traverse 0.2 V is 10 ms, which is ten times less than the half-life of B. Thus, only a small
amount of B is lost to the following reaction. Thus, the first wave appears almost reversible, and
the second wave is reversible but with peak currents less than those seen at 1 Vis.

The following vol were d using DigiSim 3.0 (Bioanalytical Systems) by M.
Rudolph and S.W. Feldberg. The mechanism was specified as
A+e=B
k=6.93 571
Fky /1000
C+e=D
The input i with the above hanism are tabulated as follows. The homoge-
neous rate constant of k; = 6.93 s~ is found in problem 12.2.
Estart (V): 0
Eswitch (V): -1.2
Eend (V): 0
v (V/s): 0.05
temperature (K): 298.2
Ru (Ohms): 0
Cdl (F): 0
cycles: 1

electrode geometry: planar
area (cm2): 1
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diffusion: semi-infinite

pre-equilibrium: enabled for all reactions

species parameters:
Canal[A] (M/1): 0.001
Canal{B] (M/1): 0
Canal[C] (M/1): 0
Canal[D] (M/1): 0
025 oosova
020
015
010
2 o008
- 0.00 m\/
005 02 04 06 08\ 4 2 14
040
P
€
100 10V
a0
080
g™

™
e

50 200vis.

o

w0

20

)

b 04 [as s 4 a2z s
a0

a0

Problem 12.3 From the discussion in Section 12.3.3 (a) and Figure 12.3.10, one concludes that
the mechanism is E,C;.

At+te=C
B-tc

From Chapter 6, a ible cyclic vol am without k kinetics is ck ized
by AE, = 59/n mV at 25 °C and 4pq/ip. = 1. From the table accompanying the problem, this
behavior is seen at sweep rates of 100 V/s and 200 V/s. At sweep rates less than 100 V/s, one
sees that the E/; value shifis in a positive direction from the reversible value at 100 and 200 V/s,

‘ipa/ipe becomes increasingly less than unity, and the ratio 4p./v*/? changes only slightly between
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0.1 mV/s and 20 mV/s. This behavior is indicative of an E,C; mechanism.

Problem 12.5 In cyclic voltammetry, from Figure 6.5.2, and for a reduction that is reversible,
E) j5 is located approximately halfway between the cathodic peak potential E,,. and the anodic
peak potential E,, irrespective of sweep tate. The half-wave potential is defined as (footnote b
under Table 6.2.1)

. RT_(Dp\"?
- o’ L]
Eyjp =B +nFm(Do) [

Usually Do and Dy are assumed to be equal so that E” = Ey, thus allowing the standard

(or formal) potential to be determined. However, Do and Dp can be determined from ip, and

ipa (equation 6.2.18 for i,) ively, and the d ined B} /5 d for any differences in

the two values to yield E%'. Other assumptions include n = 1, a planar electrode, the switching
and h

potential is at least 35/n mV past B, and the absence of h kinetics.
If the electrode process is EC, then from Figure 12.3.10, one sees a transition from a cyclic voltam-
mogram with only a cathodic peak (for a reduction) to a ible cyclic vol with both

an anodic and cathodic peak as the sweep rate is steadily increased. Moreover, one observes a
shift in the peak potential, which is generally positive of the reversible E, value because of the fol-
lowing reaction, in a negative direction (toward the reversible curve) with increasing sweep rate.
Therefore, in the of an EC mechanism, the dard p al d from a cyclic
voltammogram would be more positive than the true standard potential.

If there is a slow electron transfer to a chemically stable product, then both the cathodic and anodic
peak potentials are shifted out with respect to the reversible cyclic voltammogram such that the
peak splitting AE,, increases. This is illustrated in curves 3 and 4 of Figure 6.5.3. It has been
demonstrated [H. Paul and J. Leddy, 4nal, Chem. 67 (1995) 1661-1668] that B, /2 1S approximately
(to within 1 mV) midway between the cathodic peak potential Ejpe and the anodic peak potential
Epq for k° =0.002 cm/s and AFE,=145 mV at 100 mV/s. Outside of this range, the approximation
does not hold.

Problem 12,7 (a). The mechanism for an E,C; reaction is as follows:

O+ne=R
R+Z X 0+Y

where k = k'C%. The ions for the ion of species O and R are given by equa-
tions (12.3.34) and (12.3.35), respectively. Let v = (kt)/2, A = (kr)V/2, and Ay = (kra)/2.
At the transition time 74, Co(0,t) = 0, allows the following expressions to be written for the
concentration of species O and R.

i

. _ ve ot 12
CH= AFADIRE erf(k7q)'/? = "FADVAR erf(Aq) a
i
Co(0,) = ot lert () = et () @
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- i
Cr(0,8) = C — Co(0,t) = i (D) ®
Substituting equations (2) and (3) into the Nernst eq jon leads to the following expression for the
E — t curve for ct P iometry with a following catalytic reaction.

RT [erf (Aa) — erf] ('y)] @

=E" + =l
£ + nF erf(y)

®). Ask — 0,7 — 0,and 7q — 0, so that from equation (A.3.3), the error function can be
simplified to

22, 2
erf(y) = F/% = F/_?(k”)m ©)

Substitution into equation (4) leads to

—Eo 4+
E=E +nFln A7

RT [ri/ - tl/z] ®

which is almost identical to the E — ¢ expression for a nernstian electrode reaction as given by
equation (8.3.1).

(¢). As A — oo, this implies that k — oo, so that erf(y) — 1 and erf(Ag) — 1, and substituting
these results into equation (4), one finds that E = E%'. Thus, no transition is observed under these
conditions.

(). E,/s ocours when t = /4. Thus, t//> = /7/2, and (k)2 = (k)22 = AV/2)2.
Substitution into equation (4) leads to

B =E" +

RT {erf(/\l/z) — erf(AY/2/2) -

nF erf(A1/2/2)
Aplotof F5(Eys — EY) vslog A is shown below.
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4 =0052= ; ®)
_moA _ 10~ ~2¢m % 50cm? 3 -1

L A = ®

k=0.052p=26x10"%s"! [0)

(b). Under steady state conditions, time ¢t — co. Thus, equation (12.7.9) can be written as
x
(o) = Gign(oe) = [ 125 ®
and equation (12.7.8) as

Ci(0) = Clps(00) = C; - Chpaa(o0) = G [1 - T] Cil1 - 0.05] = 0.95C;(9)
Ciar(00) = 095 x 0.0LM = 0.0095M

Problem 12}{1 lggure 12.3.2 shows cyclic vol ams for the C,E. hanism where
O+e=C
The relevant constants for this problem are as follows: C% = 1mM = 1 x 1075 mol/em®, D4 =

Do =D =105 cm?s, K = 1073, k; = 10725, k, = 10571, T=25°C,and v = 10 V/s.

(a). The approximate concentration for species O at the start of the cyclic voltammetric scan is
found from equation (12.3.4).

C*K
Col@) = g7 o
1x 1073 M x 1073 _6 _g ™Mol
= — 9T - =1x107°M=1x10 oo

(b). Assuming that the preceding reaction does not affect the shape of the cyclic voltammogram,
the peak current is calculated from equation (6.2.19).

27172 2
ip =269 % 10° x 1em? x [10-5 "’”T] x 107 ';:l [10 ] =260x10°4 @)
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This peak current is in good agreement with the peak current of (2.7 — 2.9) x 10~8 A observed in
Figure 12.3.2 forv = 10 V/s.
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13 DOUBLE LAY s UCTueR
AND ADSORPTION

Problem 13.2  Consider equation (13.3.10).

dp\? 2T — o —zed\
(E) = Zni exp { —m 1 (13.3.10)
For a symmetrical electrolyte of only two ions where the ions have equal charge, this becomes
dp\? _ 2an‘ —zep zed
(dz) = exp ( 1+ exp T -1 )

0
- 252 () oo ()
2an
- 2 e )
_ 4kTn? ze¢
= e [cosh (ﬁ)—l]

where z is the magnitude of the ionic charge. Take the square root of both sides.

dp _, |akTn? 2e$ 12
== o [cosh (ﬁ) - 1] @

But, the half angle formula yields
V2 sinh% = [coshz — 1]/2 ®

Thus, for the negative root, equation (13.3.11) is found.

dg _ 8kTnf . zed
etk o sinh (m (13.3.11)
Problem 13.4 Consider equation (13.3.27).
oM = [8kTeeqn®)?sinh | = ( ¢ — L (13327)
T\ Tero e
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Expand by noting that sinh u = 0.5 [¢* — e7*].

[8R:Teeon°]1/2 Mgy ze oMy,
BEG (oo s (- )] -0 [ (o -2)])

02 (axp | 2200 ze aMa) 90] oy [ 22, 222
= [2#Teen’] (e"p[ ijlexP{ T e } e"p{ 2kT]exP [2kT o

Differentiate with respect to ¢g.

doM 172
T = [2kTeeon® X @)
g = [2Teon’]
exp | T " exp 5—,;57—" + exp —525,% exp |55 —3":::
z’k—r exp |58 | exp |~ % | +exp | -5 | e | A5 7 |) B
Rearrange to yield

dgo | +or (e"P [ﬂ;‘“‘] exP[ B e ] +exP[ 'k?'“] exp [2kTU£_::K])

g

o
o [ ol ] .
67 oo 8 o s 2]
Note that coshz = 0.5 [e* +e 7.
doM 1 ze g ze oMz,
8, {[2/@&0”0]1/2 * e [m (% ) )] @
oMy
= kT oot [ZkT (‘1’ e )] ®
Or,
doM £ cosh [2—’,‘,% (‘f’o - %‘)] ©®
ddy _——_[2kTee:>n°]"’ + #f & cosh [ (¢o - )]

o [kTeen’] 2 cosh [ (40— 2222)]

B 1+ [2kTEEgnO]1/2 # 2 cosh [ (¢0 - ”—Mzﬂ):l
[segget] V2 eh [# (30— 222)]

1+ [ﬁz’s’ssnn"]l/? cosh [ (% _ %z)]
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From equations (13.3.25) and (13.3.26),

- dé
2=+ (d”)zq, z2 ()
d¢ _ oM
(75) seay | €€ ®
Then,
M
a
$o=dp— afﬂz ©)
] (6) reduces to eq (13.3.28) where do™ /d¢y = Ca
22 e2egn® 1/2 ze
C doM [ﬁs_] cosh [ i) )
4= = 2e2eeqn® z 2
o 1[50t 2 conh [i56s)
The reciprocal yields equation (13.3.29).
“1— =2 -+ —*—11*‘—— (13.3.29)

Cy e [2;%}:;5,1;0] /2 cosh [T;I:T%]

Problem 13.6 Electrocapillary curves plot the surface tension of 2 liquid electrode in contact
with a solution. In Figure 13.9.1, the electrocapillary curve is shown for Na;SO,. The potential of
zero charge (PZC), where o™ = ¢ = 0, is found at the maximum of the curve. For Na;SOy, the
PZC is ~ 0.8 V vs NCE. In the presence of n-heptanol, the maximum is suppressed because the
heptanol is surface active and alters the surface tension. In the absence of n-heptanol, the surface
tension of the mercury electrode (7) is weakened by the charge interactions associated with excess
positive and negative charge at the electrode surface. In the presence of n-heptanol, these charge
interactions are shielded by the adsorbed alcohol, and the surface tension response is flattened.

The excess charge on the metal, o, is found from the derivative of the plot of v versus -E
according to equation (13.2.2).

oM =— (6‘%’) (13.2.2)
~/ Bnaysog ki,
The differential capacitance, Cy, is found from the derivative of the plot of oM versus E, according
to equation (13.2.3).

oM

Ca= BE (13.2.3)

105



RN ERTTOUR . net

Thus, the differential capacitance is found from the second derivative of the electrocapillary curve
with respect to potential.

In Figure 13.9.2, the differential capacitance curves are shown. The curve for NazSOy is roughly
a gentle parabola, similar to those observed for other electrolytes and modeled by Gouy-Chapman
Theory (Figure 13.3.5). For the n-heptanol, the capacitance is roughly invariant between -0.4 and
-1.4 V. This is consistent with the adsorbed n-heptanol formmg a capacitive layer at the interface
between the solution and the el de. Denote this a3 Chept. In Grahame’s review,
he specifies the equivalent circuit for the n-heptanol and Nap SOy system as the resistance of the
adsorbed layer in parallel with its capacitance whereas the solution resistance and double layer ca-
pacitance are in series. Chep is in series with the double layer capacitance, Cy, which includes the
capacitance of the Helmholtz layer and the diffuse layer. For capacitors in series, the total capaci-
tance, Ciotar, is set by the reciprocal sums as Cj,p,; = Cz* + C;,.L,. Thus, the smaller capacitance
dominates the capacitance of the interface. Between -0.4 and -1 ft V, this is the capacitance of the
adsorbed heptanol.

In the p of n-l 1, as the p ial exceeds the range -0.4 to -1.4 V, the electrode is
suﬂimenﬂy polarized that its charge is compensa!.ed by the ions in solution rather than the polar
alcohol molecules, and the t 1is displaced from the el de surface by the ions. Outside the
range -0.4 to -1.4 V, the dlﬂerenual capacmncc for the NapSOy4 and the NapSO4 with n-heptanol
superimpose. The sharp di i waves are iated with the sudden change in
the charge in the interfacial region.

Problem 13.8 For a Langmerian isotherm where 8 = I'; /T',, equation (13.5.7) applies.

4
== Ba? (13.5.7)
where T, is the saturation coverage of 8 x 1071° mol/cm? and af’ is the activity in the bulk. Here,
assume the activity is well-taken as the concentration. If = 0.5,

1 1

[N S —8 3
B =% = 5x107 ool 2 x 107° mol/em 1)

Thus, the approximation of a;’ = ¢; Is appropriate.

The adsorption isotherm is a plot of § against the solution activity. From equation (13.5.7),

@

For f; = 5 x 107 ¢cm3/mol, this yields the following Langmerian adsorption isotherm.
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The linearized isotherm applies when, from equation (2), § ~ ﬁ,a} For this to be correct to within
1%,

Bat b
2 0. 5
T+ 2 0.998;0; @)
Or,
1+8a < _1_=101 @
099 )
Bt < 0.01

For 8; = 5x107 cm®/miol, the linearized version applies for a? < 0.01/8; = 2x 1071 mol/cm?.
Note that this corresponds to the approximate limit for early linearity in the isotherm above.

Problem 13.10  First consider the adsorption kinetics for a single species, 4, where the change in
0; (the coverage) is set by the rate of adsorption minus the rate of desorption. The rate of adsorption
is set by the rate constant, k,;, the solution concentration, C;, and the fraction of empty surface
sites, 1 — 8;. The rate of desorption is set by the rate constant, kg, and the coverage. Then,

db;

% = kaiCi (1 — 65) — kg 6; )

= kaiCi —8:fkas + ko iCi

At steady state, df;/dt = 0. Thus,

df;
T = 0= kaiCi—0i[kas+ kaiCi @
o = —taiCi  __(kailksg)Gi

kai+kaiCi 1+ (Kasi/kaz) Ci
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For §; = I';/T's and §; = kq,i/ka,, this reduces to equation (13.5.8) for a single species.

(13.5.8)

Now, by analogy consider the competitive adsorption of two species, ¢ and j. The unoccupied
surface fraction is 1 — 6; ~ 8;. The steady state rate expressions for the coverage of < and j are
defined as follows:

do;

d_t' = ko iCi(1 — 0; — ;) — kq3bi =0 3)
dé

G = FagCi(l— 8= 63) —kay6; =0 @

For f; = ka,i/ka; and 8; = ka,;/ka,;, the above yield

BiCi(1—-6:—6;)—06; = 0 ®)
—-8; (B:Ci +1) - 6;8C: +BCi = 0 ©)
BiCi{(1-0:-6;)—6; = 0 U]
—0.8,C;5 ~0; (B;C5 +1) +5,C; = 0 @®)
This yields two equations in two unknowns. Equation (6) is rearranged to the following:
_BCi-6:(BCi+1)
0; = B Yo ©
Substitution into equation (8) yields an expression in 6.
.Ci — 6;(B:Ci + 1
—0:6,C; — (8,C; +1) (ﬁ_”‘ﬂ(c";)) +8;,0 = 0 (10)
8,0+ 1) (8;C; + 1
6 [—ﬂicj + %} = —B;C;+B;C;+1
o =B,CiB:Ci + (8;C; + 1) (B:Ci +1) 1
B:C:

B:iCs

0 = —— PG
‘ B;C; + B;C; +1
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Or, equation (13.5.9) is found.

_ Ts8:Ci
T BiCi+BCi+1

Substitution of §; into equation (6) yields equation (13.5.10).

i (13.5.9)

;Ci — 8, (B:Ci + 1
8 = BiG =8 (Bt 1) ﬂ.(cﬁ, ) @an
BiCi— E,’Cf% (B:Ci+1)

B:Cs

1
T BG T AGHT A
B,Ci + B:Ci +1- (B:Ci +1)

B;Ci +B8:Ci +1
B85C;s

B;Ci+BiCi +1

=1

Or, equation (13.5.10) is found.

__ DG
77 B,Ci+B,Ci+1

(13.5.10)
Problem 13.12  Consider equation (13.7.4).

b 00 e — _ _gY

—r = KChexpl-2féjexp [af (B B - ;)] (13.7.4)

(a). Note that ) = E — E%". Equation (13.7.4) is rearranged to the following:

lni = In[nFAKCE] — 2f¢s—af (- 62) ®
In [nFAk?Cg] +f¢a(@—2)—afn

Tafel plots are plots of Ini versus 7. The slope is set by d1ni/8n, where ¢, is a function of 7.
Thus,

Olni _ _ 0
oy = ol + fla =25 @

(b). Rearranging equation (13.7.4) yields

iexp(zfga] = nFAKCexp [~af (7 = ¢2)] [©)
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Taking the log of both sides yields the equation for the “corrected” Tafel slope.
Infiexp 2/ 4,]] = In [nPAKCE] - af (1~ ¢2) @
Aplotofln [i exp [z $,]] versus n—g, will yield a slope of —c:f and an intercept of In [nF AK)CE].

Problem 13.14 The Frumkin isotherm accounts for interactions between the adsorbates, either
attractive (¢’ > 0) or repulsive (¢’ < 0). Equation (13.5.14) describes the Frumkin isotherm.

9
BiCi= 75 exp [-40] &)
The dimensionless term 3;C; describes the concentration effects. The most direct way to calculate
the isotherm is to calculate 3;C; for a range of 6. The isotherm is a plot of 8 versus 3;C;. The
appended spreadsheet shows the responses for g’ of 2, 0, and -2. For g = 0, the isotherm is
Langmerian, and on the plot this is the central data set. When g’ = 2, the interactions are attractive
and the adsorbed layer is formed at lower 3;C;. Conversely, for g’ = ~2, the interactions are
repulsive and higher 3;C; is required to drive monolayer formation.

i

] 6/1-6) BICI (g'=0) BiCi {g'=2) BICI (g'=-2)
o. 0 0 0 9

005 0052632 0.052832 0.047623 0.058167
010 0.111111 0111111 008087 0135711
0.45 0.176471 0.176471 0.130733 0.23821
0.20 025 025 06758 0.372956
025 0333333 0.333333 0.202177 0.549574
030 0.428571 0.428571 0.235205 0.780308
0.35 0538462 0.538462 0.267382 1.084328
040 0566667 0.668667 0.209553 1.483604
045 0818182 0518762 0.332648 2012403

1 1 0367679 2.718282
1222222 1.222222 0.406842 3.671758
15 15 0.451791 4.380175

1857443 1.857143 050613 6.814408
070 2333333 2333333 0.575393 9.462133

075 3 3 066939 1344507

0.80 4 4 0807586 19.81213 PY

0.85 5.666667 5666667 5.035207 3101904 BiCi
0.0 9 9 148769 5444683

055 19 19 2841804 127.032

096 24 24 3518567 163.703

067 32.33333 3233333 4.646428 224.9096

088 a9 49 6902063 347.867

99 9
0997 3323333 3323333 452471 2440.84

110




www.Endbook.net
14 ELECTROACTIVE LAYERS AND
MODIFIED ELECTRODES

Problem 14.2 The curve in Figure 14.3.4b is almost identical in shape to the theoretical curve
in Figure 14.3.4a, consistent with only adsorbed O electroactive. The relationship between peak
current, 1,, and surface coverage, I'y,, is given by equation (14.3.22).

. aF%ATy

ip= G (14322)

To account for n other than 1, the equation is modified as follows, consistent with the usual cluster

of nF/RT.
. cszAvI‘b
» = T37I8RT o

Itis given that n = 2, A = 0.017 em?, and v = 0.1 V/s. From Figure 14,3 .4b, ip=22x10"7 A.
Assume & =0.5and T = 298 K.

. anF2AvI‘b
= T8RT @
. _ 2.718RT
To = anF2Av &
_ 2.2x 1077 A x 2.718
" 0.5 x 2 x 96485C/mole x 38.92V -1 x 0.017 cm? x 0.1 V/s
= 9.37 x 107 molefcm®
= 9.37 x 107"} mole/em? x 6.02 x 10% molecules/mole
= 5.64 x 10*® molecules/cm?
This corresponds to 1.77 x 10~ ¢m? = 177 A2 per molecule, well below a p layer.

Problem 14.4  The equations for the chronocoulometric response to a forward and reverse poten-
tial step are given by equations (14.3.33) and (14.3.36).

2mFACY (Dot)'/?
Qt<r)= ":% +nFATG + Qq (14.3.33)

* D,y 1/2
Q> =2F Aﬁ‘/’z 0 (1 + ‘“”gfr o ) 0+ agnFATo + Qu (143.36)
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where T is the time for the forward step and

mFACS (Do)
e

Qc can be evaluated from the slope of the data Qj versus t'/2 according to equation (14.3.33),
where Sy = 2nFACY (Do/w)l/z. It is given that @ = \/7 + /t — 7 — /2. A plot of Q, versus 0
yields a slope, S, where

2mFACY Do'/? anFAD
5 = e 2 (1+ IQC 0) @

amFAFo)
Si{l+ ————
g ( Qc

Thus,

|
I
L
4

S, alnFAr
Sy Q ¢
_ aynFA To

SpvT

®)

Or, for a; approximated as 0.97, I'p is found.

_ VT
o= TnFA {8 — 5¢] @

Note that this method avoids evaluation of Q4 and, as it relies on stopes as opposed to intercepts,
it relies on statistically more advantageous data.

Problem 14.6 (a). The moles of HyQ in the cell are determined from the concentration and cell
volume.

moles of HoQ = 0.1 x 1078 moles/cm® x 1.2 om? x 4.0 x 1073 em (€8]
= 4.8 x 107 moles

The cell volume is 4.8 x 1073 em?, It is given that after filling the cell the first time, electrolysis
of the solution solubilized species yields 32 1C. Faraday’s law allows the calculation of the moles
of material HoQ in solution. Under the experimental conditions, only the solution species can be
electrolyzed. n = 2.

Q

—= = moles 0]

nF
32x10°¢C

_aexig e -10
T% 86485 Cmale — L7} 107 moles
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Thus, from the initial number of moles in the cell (4.8 x 10~1°) and the moles remaining in solution
after adsorption (1.7 x 10~19), the moles of adsorbed H2Q are found: 4.8 x 10~10— 1.7x 10710 =
3.1 x 10719, The cell is emptied and supplied with a fresh aliquot of hydroquinone solution.
The electrolysis of the solution species requires 96 uC, which from Faraday’s law, corresponds to
5.0 x 1071° moles or ially, all of the hydrogui provided by the fresh aliquot. Thus, all
the H2Q adsorbed from the first aliquot, and the adsorbed material forms a dense packed monolayer.
This assumes that the hydroquinone adsorbs only on the platinum. The area per molecule is then
calculated as follows:

3.1 x 10710 moles 23
Tremr x 6.02 x 10% molecules/mole 3

1.56 x 10" molecules/cm?

Io =

The cross sectional area per molecule, o, is found from the reciprocal.

1
SR @

em? % 108A
1.56 x 1014 molecules cm
64 A? /molecules

(b) Thc two probable orientations for adsorbed hydroquinone are flat and edge on. The area of

lecules crudely corresponds to a square area 8 A on a side. The adsorption of hy-
droqumonc parallel to the surface of the electrode such that HQ lies flat on the surface is most
likely.
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Problem 15.2 The circuit, shown on the next page, is formed by combining the adder circuit of

Figure 15.2.3 with the integrator circuit of Figure 15.2.4.

For the adder circuit, as illustrated by equation (15.2.7), the input current is the sum of the individ-

ual input.
tin =11 + 42

From equation (15.2.11) for the integrator,

de
O = —iin
Cp
R il
Il
e ,. %
I
T Ry
Y
ez Y €o
I = I
Thus,
de,
O = —(+ig)
Or,

e = -—é /(il +ig)dt
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Problem 15.4 Consider the modified current follower shown below.

tin

€o

The impedance of the parallel resistor and capacitor is developed as outlined in Chapter 10. For
4 1

elements in parallel, the imp are d as recip!
1 1 .
7= R_f + jwC [
Ry
Z=—5=
TT R, C @

By analogy to the text in section 15.2.1, conservation of charge (i.e., Kirchoff’s laws) dictates that
the sum of all the currents into the summing point must be zero. Thus, iy = —iin. The voltage
drops around the loop must sum to zero. From Ohm’s law,

—este+isZ = 0 3)
e, —es = —ifZ
From equation (15.1.1), e, = —eo/A.
e {1+ ) R Z 4
o 2)=u @
For A very large,
e, 2 —ifZ o)
i _ B
1 + jwRsC
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If the circuit is subjected to a high w oscillation or a phase shift, then for sufficiently small C, the
capacitor in the feedback loop will filter out the effects of the hi gh frequency oscillation and phase
shift. Note that as w — 0, the capacitor in the feedback loop has no effect,

In the IC Op Amp Cookbook, by W.G. Jung, Prentice Hall, 1997, 3rd Edition, pages 159-160, this
circuit is discussed in more detail. For stray capacitance associated with the input, a phase shift
can arise. The capacitor in the feedback loop provides a means to compensate for the phase shift.
The value of C'is found experimentally, with typical values of 3 to 10 uF for Ry~ 10 kQ.

Problem 15.6 A capacitor is added between the summing point and booster output in the adder
potentiostat of Figure 15.4.5. The relevant portion of the circuit is shown below.

The effect of adding a capacitor back into the summing point is to put an additional negative
feedback loop into the control amplifier. At the summing point 4;, = ic + ip . Because the
impedance of the capacitor gets smaller at higher frequencies, that is

Zo=— [¢)]

the feedback is more important for higher frequencies. This setup is often used as a stabilizing

mechanism if the operational amplifiers in the potentiostat tend to oscillate.
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Problem 15.8 Consider the circuit shown below.

Cq

Eref Etrue
o

—
“Ap—o

The potential is applied across eyey and ground and the potential is measured across e¢rye and
ground. The voltage drops around the loop including e and Cy are such that

e = G 0]
The voltage drops around the loop including e, Ry, and Cy are
- q
€ref = iRy + o (&)

Thus,

Cirue _ f?: - q @
eref iR+ g; iRCa+q

From section 1.2.4(a), a potential step to a series resistor and capacitor yields a current through the
circuit and a charge on the capacitor given by equations t(l .2.6) and (1.2.10).
i = —-exp

= 126)

" RsCy

g=EC; [1—exp (_ﬁstc_d)] (1.2.10)

In this problem, Ry is R,. As the current through the loop including eres, Ry, and Cq and the
current through the loop including the loop including e¢rye and Cy are the same, equation (1.2.6)
describes the current flow through the dummy cell.

Substituting into equation (3) yields equation (15.6.1).

Ctrue _ 1—exp (‘ﬁ'}) @
eref exp (“R_:CZ) +1—exp (—ﬁ)
= 1-—exp (_R:Ck) (15.6.1)
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Problem 15.10 If the current follower in the potentiostat of Figure 15.4.5 reaches the output limit
(i.e., “Goes to the Tails”), then the op amp is no longer controiling. This means that the summing
point is no lenger at virtual ground so the other op amps would no longer control the working

1 de against the r 1 de (because they assume the working electrode is at ground).

Problem 15.12 The simple model for the uncompensated resistance in series with the double
layer capacitance is a series RC circuit. From section 1.2.4(a), the current response for the potential
step for the series RC circuit is given by equation (1.2.6), where Rs and Cj are the uncompensated
solution resistance and the double layer capacitance.

. E t
i(t) = Rs exp (-m) (12.6)

The data include E = 0.050 V, i(1 ms) = 30 p24, and ¢(3 ms) = 11 wA. The ratio of the current
responses yields

30 puA _ =P (_%S:OSI) (2 x 10'3>

TipA 273 exp (Aaxmf) =P\ "RsCy o
o 2x 10-% s _ 3
RsCy = m =199x107"s

Substitution of RsCy and E into equation (1.2.6) for (1 ms) = 30 uA yields Rs, which in turn
yields Cy-

E t
Ry = P (*m) [¢)]
_ 005V 103
T x10CAF ( 199 x 10—3>
= 10080
Ca= 1.99x 1073 s 197 uF ®
1008 & ’

Or, for a 0.1 cm? electrode, the capacitance is 19.7 uF/cm?.
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16 SCANNING PROBE

TECHNIQUES

Problem 16.2  (a). The system described is for a feedback configuration and the current response
is characterized by equation (16.4.3).

+0.3315exp [—%} (16.4.3)

ir
— =Ip(L) =0.68 +
7,00 T( )

»

0.78377
L

where L = d/a and ir,0o = 4nFDoCHa, as shown in equation (16.4.1). The tip radius is a and
the distance from the surface is d. It is given that a = 5.0 x 1074 cm, C = 5.0 x 108 mol/cm?,
Do = 5.0 x 10=% cm?/s, and ir /it 0o = 2.5. Equation (16.4.3) is non-linear and must be fit
cither from a working curve or by successive approximation. A working curve that incorporates a
successive approximation for this case is shown in the spreadsheet. From the curve, L = 0.438 =
d/a. Thus, d = 0.438 x 5.0 x 107 cm = 2.19 x 1074 em = 2.19 um.

L L L iT(L) 90
01 8518 16 1340 a0
02 4600 18 1299
03 3302 2 1266 70
04 2662 22 1240 60
0438 2498 24 1219
05 2287 26 1.201 350
06 2042 28 1186 F o
07 1872 3 1474 10
08 1747 32 1162
09 1852 34 1153 20
1 1578 35 1148 10
12 1469 4 1130 00
14 1395 45 1116 2 1 y : ; M
15 1.365255 5 1105 L

(b). From equation (16.4.1), i1,0c = 4nFDpCha. Letn = 1.

iT,00 = 4nFDoCHa
= 4 96,485C/mol x 5.0 x 1078 cm?/s x 5.0 x 1078 mol /em® x 5.0 x 10~¢ em
=4.82nA.

(c). Equation (16.4.2) applies to an insulating substrate.

; -1
2y = o202+ 238 4 06s53exp [—310—33“ (164.2)
Te0 L L

For L = 0.438, I7(L) = 0.266. Here, IT(L) < 1, i with the insulating substrate red
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access to the tip and decreasing current from that expected for a microdisk in bulk solution.

Problem 16.4 The reaction is an EC;, where the kinetic step is first order. The rate constant, &,
has units of s—1. The data indicate that the product, R, is completely reacted away once the tip
substrate distance exceeds 4.0 um. The time for R to react away is approximated from the time it
takes a molecule to diffuse from the substrate to tip. For a diffusion coefficient of 5 x 107° cm?/s
and a distance of 4.0 gm = 4.0 x 10* cm, the time is

(4.0 x 10~% em)®

@ox107em) -3
IO anzys = 2} 1070 )

timeﬁﬁ—
&=

The rate constant is then approximated as k = 1/time = 313 s~1. This is a rapid following
reaction.

For cyclic voltammetry, a nernstian response for an EgC; is described on page 497. From Figure
12.3.12, the ratio of the peak currents for the forward and reverse sweep is equal to 1 for log k7 <
—2.0, where 7 is the time between E) / and the switching p ial. Allow this p ial difference
to be 500 mV, then T = 500 mV/v where v is the scan rate in mV/s. Then,

kr < 10729=0.01 )
x @7@ 0.01

v > 1.6x 107 mV/s=16x10*V/s

313571

Whereas such high scan rates can be achieved at microelectrodes under careful experimental pro-
tocols, they are not common. No useful experimental data would be obtained at these scan rates
for larger electrodes because of d resi: and i effects.

SECM has several advantages over more traditional electrochemical methods for studying high
speed reactions. As compared to other steady state collection methods (e.g., rotating disk), the
collection efficiency for SECM can approach 100%. SECM is a steady state technique, and as
such, is not impacted by d resi: and i that plague transient methods
such as cyclic voltammetry.
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17 SPECTROELECTRO-

CHEMISTRY AND OTHER COUPLED
CHARACTERIZATION METHODS

Problem 17.1  This problem addresses the absorption spectra of a cobalt complex with the Schiff
base ligand bis(salicylaldehyde) ethylenediimine. This problem is concened with the absorbance
wave at 710 nm as a function of potential (vs. SCE). For ligand z, the electrochemical reaction is

Co(IDx + e = Co(Dx
The corresponding Nernst equation is

[Co(ID)z) _ 2.303RT |  [Co(II)z]
Coel = E = F 1% (el ®

RT
E—E°+ﬁln

At—0.9 V vs. SCE, the complex contains Co(Il), and essentially no absorbance occurs. This value
is listed as a background value to correct all other absorbances which are then labeled as A’. In
terms of absorbance

A = [Co(D)aed @
or
o
(Co(Na] = % ®
Asthe p ial is made pr ively more negative, the ion of Co(II} d as that

of Co(l) increases. Finally, at —1.45 V vs. SCE, the complex is reduced completely to Co(I), and
the maximum absorbance is recorded. At this potential, from equation (3),

. 0.685
== @

For electrochemical purposes the total bulk concentration is
[Co(I)x) + [Co(IT)z] = C* ®)
Rearrangement of equation (5) leads to

[Co(iI)a] = C* — [Co(I)a] = C* - “:;b' ©
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The ratio of the two concentrations leads to

[Colil)z) _C*—%4 C'sb 120685
Coa] ~ & T A -TA

A table showing the data and a plot of E vs. log [Coz(IT)z}] / [Cox(I)z] are shown below.

Curve A A E {Co(ID)] / [Co(I)] log[Co(II)])/[Co(I)]
a 0.040 0.000 -0.900 e &)
b 0072 0032 -1.120 20.406 1.310
c 0.111 0071 -1.140 8.648 0.937
d 0.179 0.139 -1.160 3.928 0.594
e 0279 0239 -1.180 1.866 0.271
f 0411 0371 -1.200 0.846 -0.072
g 0.633 0593 -1.250 0.155 -0.809
h 0.695 0.655 -1.300 0.046 -1.339
i 0.719 0679 -1.400 0.009 -2.054
] 0.725 0.685 -1.450 0.000 -00
15
log [Co(I)x)/[Co(l)x}
10 |
05
0.0 T T T T ]
05—1 110 -1.156 -1.2 -1.25 -1.30 -1.35 -1.40
) E (V vs. SCE)
a0t
15
20
25 -

(@)

Regression according to equation (1) leads to the following. Only linear points (curve b —curve g)

were used.
stope = 2588 _ o 679133
nF
2.303RT
" slopex F =075 ~1

intercept = E® = —1.207V
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Problem 17.3 The absorbance .4 is found directly from equation (17.1.2), and the constants
given. The results are shown in the spreadsheet and graph below.

cR(Mcm) 1.00E+02 1.00E+03 1.00E+04

Dofcm/s)  1.00E-05

Co'(M) 1.00E-03

"7 1.772454

(s) €1 62 3 t%g)*? t(s) el €2 €3 ()™
0.001 0000011 0000143 0.001128 0.031823 0051  8.06E-05 0.000806 0.008058 0.225832
0002 0000016 0000160 0.001686 0.044721 0052  8.14E-05 0.000814 0.008137 0.228035
0003 0000020 0000195 0.001954 0.054772 0053  8.21E-05 0000821 0008215 0.230217
0004 0000023 0000226 0.002257 0.063248 0054  8.29E-05 0.000829 0.008292 0.232379
0005 0000025 0000252 0.002523 0.070711 0055  B.37E-05 0.000837 0.008368 0.234521
0006 0000028 0000276 0.002764 0.077460 0086  BA44E-05 0000844 0.008444 0.236643
0007 0000030 0.000299 0.002085 0.083668 0057  B.52E-05 0000852 0.008518 0.238747
0008  0.000032 0.000319 0.003192 0080443 0058  B59E-05 0.000856 0.008593 0.240832
0009  0.000034 0.000339 0.003385 0.094868 0059  B.B7E:0S 0.000867 0.008667 0.242899
0010  0.000036 0.000357 0003568 0.100000 0060  874E-05 0.000874 0.00874 0.244949
0011 0000037 0.000374 0,003742 0.104881 0061  881E-05 0.000881 0.008813 0.246982
0012 0000039 0.000391 0.003908 0.108545 0062  8.88E-05 0.000838 0.008885 0.248998
0013 0000041 0.000407 0.004068 0.114018 0063  B.9BE-05 0.000896 0.008956 0.250998
0.014  0.000042 0.000422 0004222 0118322 0064  9.03E-05 0000803 0.008027 0.252982
0015 0000044 0.000437 0.004370 0.122474 0085  9.1E-05 0.00091 0.06097 0.254951
0018  0.000045 0.000451 0.004514 0.126491 0066  9.17E-05 0.000817 0009167 0.256905
0017  0.000047 0.000465 0.004652 0.130384 0.067  9.24E-05 0000924 0009236 0.258844
0018 0000048 0000479 0.04787 0.134164 0068 93605 000093 0.009305 0.260768
0.019 0000049 0000492 0.004918 0.137840 0089  9.37E-05 0.000837 0.009373 0.262679
0020 0000050 0000505 0.006046 0.141421 0070  9.44E-05 0.000944 0.009441 0.264575
0021 0000052 0000517 0005171 0.144914 0071 9.51E-05 0.000851 0.009508 0.266458
0022 0000053 0000520 0.005203 0.148324 0072  9.57€05 0.000857 0.009575 0.268328
0023 0000054 0000541 0005412 0.151658 0073 9.64E-05 0.000864 0.009641 0.270185
0024 0000055 0000553 0.005528 0.154919 0074  9.71E05 0.000971 0.009707 0.272020
0025 0000056 0.000564 0.005642 0.158114 0075  9.77E-05 0.000977 0.009772 0.273861
0026 0000058 0000575 0.005754 0.161245 0076 9.84E-05 0.000984 0.009837 0.275681
0027 0000059 0000586 0.005863 0.164317 0077 99E05 0.00099 0009901 0.277489
0028 0000060 0000587 0.005971 0.167332 0078  9.97E05 0.000997 0.009966 0.279285
0028 0.000061 0000608 0.006077 0.170284 0.079 0.0001 0.001003 0010029 0.281089
0030  0.000062 0.000618 0.006180 0.173205 0080 0000101 0.001008 0010083 0.282843
0031  0.000063 0.000628 D0.006283 0.176068 0081 0000102 0.001016 0.010155 0.284605
0.032  0.000084 0.000838 0.006383 0.178885 0082 0000102 0001022 0.010218 0286356
0033  0.000065 0.000648 0.006482 0.181659 0083 0000103 0.001028 0.01028 0.288087
0034  0.000066 0.000658 0.006580 0.184391 0084 0000103 0004034 0010342 0289828
0035 0000067 0.000668 O0.006676 0.187083 0085 0000104 000104 0010403 0.281548
0036  0.000088 0.000677 0.006770 0.189737 0086  0.000105 0.001046 0.010464 0293258
0037  0.000069 0.000886 0006854 0.192354 0.087  0.00D105 0.001052 0.010525 0.294958
0038 0.000070 0.000696 0.006856 0.194936 0088  0.000108 0001058 0.010585 0.295648
0039 0.000070 0000705 0.007047 0.197484 0089  0.000106 0.001065 0010845 0.298329
0040  0.000071 0000714 0.007136 0.200000 0090  0.000107 0.00107 0.010705 0.3
0041 0000072 0000723 0007225 0.202485 0091 0000108 0.001076 0010764 0.301662
0042 0000073 0000731 0007313 0.204939 0092  0.000108 0.001082 0010823 0.303315
0043 0000074 0000740 0007399 0.207364 0093 0000108 0.001088 0010882 0.304859
0044 0000075 0000748 0.007485 0.209762 0094 0000109 0001094 0.01094 0.306594
0045  0.000076 0.000757 0.007569 0.212132 0095  0.00011 00011 0.010998 0.308221
0046 0000077 0.000765 0007653 0.214476 0096  0.000111 0001106 0.011056 0.309838
0047  0.000077 0.000774 0007736 0.216795 0097 0000111 0.001115 0011113 0311448
0048 0000078 0.000782 0.007818 0.219089 0098 0000112 0001117 0.01117 0.31305
0049 0.000078 0.000790 0.007899 0.221359 0099  0.000112 0001123 0011227 0.314643
0050  0.000080 0.000798 0.007978 0.223607 0100  0.000113 0.001128 0011284 0.316228

From equation (17.1.2), the absorbance is

» DY/241/2
A= Eo#’_ (17.12)
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In this problem, Cg, and Do are fixed and three values of the molar absorptivity given. As pre-
dicted by equation (17.1.2) and shown in the Figure, the absorbance increases linearly with £. The
absorbance is a continuous index of the total amount of a species being monitored, for example the
reduced species R, which still remains in solution at the time of the observation. The equation de-
scribes the limiting case in which the species R is pletely stable. If hemistry

tends to deplete the ion of R, then diffe bsorb lations are Ily seen.

Problem 17.5 From Figure 17.1.9, the following table can be constructed.

Energy (eV) Wavelength (nm) & ¢&” n k

2.0 620 -10.0 1.0 0.158 3.166
24 517 -40 2.0 0486 2058
2.8 443 -1.0 50 1432 1746
32 387 0.5 50 1504 1.662
3.6 344 0.5 50 1504 1.662
The length column is calculated from the energy of incident photons using the following

relationship. Note & = 6.6261 x 10~ Js, ¢ = 2.9979x 10° m/s,and 1 eV = 1.6020x 107*° J.

he _ (6.62607 x 10-5 J — 5)(2.99792 x 10° m/s)
A== {1602 x 10°T° J/eV) (2.0 &) =620 nm ®

Equation (17.1.9) is used in solving for k and n as follows:

&y e
k= = @
where p1 = 1 at optical frequencies for most materials. On substitution of equation (1) into eq
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n—ent - =0 3)

(17.1.9) for/,

Let 2 = n2, such that equation (3) is recast in the form of the quadratic equation

m2
zz-—E’z—ﬂ:O @
the solution of which is
e 4,/(e) +4|(e)? /4 C S 1 @)
R Al U WSV S R T o

2 2

Equation (5) is used to calculate n from values of ¢’ and &”. Only positive values of n are consid-
ered. Equation (2) is then used to calculate . Plots of n vs. A and & vs. A are shown below.

0.2
wavelength, nm
00

35
30

25

wavelength, nm

340 300 440 490 540 590 640

The transition from nearly constant n or k to values that change almost linearly with wavelength
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occurs at wavelengths between 440 and 490 nm, as can be demonstrated in the graphs above by
linear extrapolation. This range of wavelengths is part of the visible portion of the electromagnetic
spectrum. Yellow, the color of gold, is seen by the eye at wavelengths between 450 — 480 nm [J.H.
Kennedy, Analytical Chemistry: Principles, 2nd edition, Saunders College Publishing, 1990, p.
424]

Problem 17.7 This problem is addressed in the discussion on page 695. Equation (17.1.12) is
used in the calculations.

_ A

" 4nlme

Tm ¢ is the imaginary part of /n3 — nf sin® 6, where

Index of refraction, aqueous solution
Index of refraction, Pt film on glass
6, = 75°,80° Angle of incidence

A = 400, 600, 800 nm  Wavelength of incident light

(17.1.2)

That is,

Ime(f = 75°) = Im v/=0.44506 = 0.6678
Ime(6 = 80°) = Im /—0.53446 = 0.7311

Substitution into equation (17.1.2) leads to

§(am) &(A)

400nm, 75° 476 476
600 m, 75° 715 715
800nm, 75° 953 953
600 nm, 80°  65.3 653

Typical values of § lie between 500 to 2000 A (discussion on page 695).

Problem 17.9 When an X-ray photon of energy hv strikes an atom in the sample, an electron
is emitted. Although the X-ray beam penetrates quite deeply into the sample, the photoemitted
electron that is detected originates in the outer 10-30 A of the surface. This electron is collected
and its energy Ej measured. The binding energy Ej of the electron in the atom can then be
determined from equation (17.3.1) as

Epy=hv—Fy (O]

From Figure 17.3.8, Ey(bulk copper) = 932.9 eV and E;,(deposited copper on Pt) = 931.95 eV.
If excitation occurs by the AlK, (hv = 1486.6 eV) line then

By (bulk copper) = 1486.6 ¢V — 932.9 = 553.7 &V @
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Ey(deposited copper on Pt) = 1486.6 eV — 931.95 eV = 554.6 eV [©)]

If excitation occurs by the MgK., line, then hv = 1253.6 eV, and

Ey.(bulk copper) = 1253.6 eV — 932.9 eV = 320.7 eV’ @

Ej(deposited copper on Pt) = 1253.6 eV — 931.95 eV = 322.6 eV 5)
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AND ELECTROGENERATED
CHEMILUMINESCENCE

Problem 18.2 In the top portion of Figure 18.1.4, the ring is held at a potential to produce Py~
and the disk is swept from 0.0 V to more positive potentials where TMPD is oxidized, first to
TMPD+ and then to TMPD?*. As the potential is swept positive, no ECL is observed until about
0.32 V and then a step increase is observed at about 0.9 V. The ECL is generated by reactions of
TMPD+ and Py~ and TMPD?* and Py~ The potential at half maximum ECL intensity is taken
as a rough estimate of the formal potentials for TMPD reduction. In the bottom part of Figure
18.1.4, the ring is held at a potential to generate TMPD'* and the disk is swept toward negative
potentials to reduce Py to Py ~. The potential at which the ECL is half maximum estimates the
standard potential at about -2.0 V. Thus, the standard potentials are estimated as follows:

TMPD* +e = TMPD
Py+e=Py—

=+)32V
=200V

The corresponding potentials from the original paper (J. Am. Chem. Soc. 93 5968 (1971)) are
taken from cyclic voltammetry and are reported as 0.24 and -2.14 V, respectively.

These reactions are combined to find ES,, as follows: (See Chapter 2 for other examples.)

Py+e=Py~ 200V =EY,
-(TMPD'* + ¢ = TMPD) (032 V=ES, o)
Py+ TMPD = Py~ + IMPD? 232V ~El; =E%, - Barpp

For the reaction as written, the free energy is calculated as AGY = ~nFE&, ¢ = —1x96485C /molx
(—2.32 V) = 2.24 x 10°J/mole. Thus, the free energy released by the reaction Py~ +TMPD+
is roughly 224 kF/mole or 0.675 V. (To convert from kl/mole to electron volts, first convert to kJ
per molecule and then note 1 €V = 1.602 x10~1° J.) The energy released by the reaction of Py~
and TMPD'T is approximately half the energy released per mole of oxygen when Hz reacts with
O3 to make water.

From the text, chemiluminescence is observed for 'Py* at 400 nm and the excimer Py} is observed
at 450 nm. The energy is calculated as E = hv = he/X. For he = 6.63 x 1073 Js x 3.00 x
108 m/s = 1.99 x 10~2Jm, Eyg = 1.99 x 1075Jm + 400 x 107° m = 4.98 x 1071° J
=3.11 eV and Eys0 = 1.99 x 107%Jm + 450 x 10% m = 4.42 x 1071% J = 2.76 V..

The energy needed to convert Py to the excited state 1Py* is about five times that available directly
from the reaction Py~ + TMPD*. The reaction of Py~ + TMPD'" also generates too little
energy to form the excimer directly. Thus, the reaction is energy deficient. As outlined in Section
18.1.1, light can be generated from an energy deficient reaction when two triplets react to generate
the excited state through triplet-triplet annihilation. According to comments on page 740 of the
text, under ECL conditions, formation of the excimer by triplet-triplet annihilation is an efficient
process.
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Problem 18.4 The basic ideas iated with pulse seq d in Section 18.1.2.
Essentially, during the first step, one of the reactants is generated and it begins to diffuse into the
bulk solution. During the second step, production of the first reactant is halted and the second is
initiated. At the electrode, the first reactant is re-electrolyzed to starting material and this generates
a concentration gradient that draws the first reactant back toward the electrode surface. As the
first reactant diffuses back to the electrode and the second reactant diffuses out into the bulk, the
two concentration profiles meet and react. Light is generated in the zone where the concentration
profiles overlap.

In the triple step technique used here, first the radical anion of 2,5-diphenyl-1,3,4-oxadiazole
(PPD'~) is generated , then the radical cation of thianthrene (TH*). For t, /t; between 0.10 and
0.12, the potential is brought back to 0.0 V where TH ¥ is reduced directly at the electrode to TH.
Then, the potential is stepped to resume the oxidation of thianthrene. If the reaction occurred im-
mediately at the electrode surface, light production would have ceased as soon as the potential was
stepped to 0.0 V. From the data in Figure 18.1.5, the light production does not deviate from its orig-
inal trajectory until ¢,./t; ~ 0.11. This corresponds to a lag of 0.01. Because t; = 500 ms, the
lag corresponds to about 5 ms. For a diffusion coefficient of approximately 3 x 1075 em?/s in or-
ganic solvents such as acetnmmle the distance of the reaction plane from the electrode surface is

estimated as £ = V2Dt = /2 x 2 x 10-5 cm?/s x 0.005s = 4.5 x 104 cm = 4.5 um.

Problem 18.6 As stated in the problem, the thickness of the space charge region is given by

TN 5 A0
= ENDA¢_ 141><10€NDcm )]

where ¢ is the dielectric constant for the semiconductor; A¢ is the potential at the surface of the
semicondm:mr with respect to the bulk semiconductor (V); and Np, is the donor density in number
per em3. Lete = 10. Below are plots of L, with A¢ for several values of Np. On page 748, a
doping level of 1 ppm is estimated at ~ 5 x 10'S cm™3. When the band bending, A¢ = 0.5 V,
and the desired penetration depth for the light is 10° cm, then a good doping level is 100 ppb. At
lower doping levels, the space charge t‘mckness increases rapidly with A¢ and the light will not be

P

able to p the o1 iently to excite the carriers.
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1 ppb 10ppb 100 ppb 1 ppm 10ppm 100 ppm

Np= 5.00E+13 5.00E+14 5.00E+15 5.00E+16 5.00E+17 5.00E+18
4V)  Mm) Lifem} Lifem) Lifem) Li(em) Li(em)
0.00 0 0 0 0 0 [
005 3.32E-05 1.05E-05 3.32E-06 1.05E-06 3.32E-07 1.05E-07
0.10 4.69E-05 1.4BE-05 4.69E-06 1.48E-06 4.69E-07 1.48E-07
015 5.74E-05 1.82E-05 574E-06 1.82E-06 5.74E-07 1.82E-07
020 6.63E-05 21E-05 6.63E-06 21E-06 6.638-07 2.1E-07
030 8.12E-05 257E-05 B8.12E-06 2.57E-06 8.12E-07 2.57E-07
0.40 9.38E-05 297E-05 9.38E-06 2.97E-06 9.38E-07 2.97E-07
0.50 1.05E-04 3.32E-05 1.05E-05 3.32E-06 1.05E-06_ 3.32E-07
060 1.15E-04 3.63E-05 1.15E-05 3.63E-06 1.15E-06 3.63E-07
0.70 1.24E-04 3.92E-05 1.24E-05 3.92E-06 1.24E-06 3.92E-07
080 1.33E-04 4.2E-05 133E-05 4.2E-06 1.33E-06 4.2E-07
080 1.41E-04 4.45E-05 1.41E-05 4.45E-06 1.41E-06 4.45E-07
1.00 1.48E-04 4.69E-05 14BE-05 4.69E-06 1.48E-06 4.69E-07
110 1.56E-04 4.92E-05 1.56E-05 4.92E-06 1.56E-06 4.92E-07
1.20 1.62E-04 5.14E-05 1.62E-05 5.14E-06 1.62E-06 5.14E-07
130 1.69E-04 5.35E-05 1.69E-05 5.35E-06 1.69E-06 5.35E-07
140 1.75E-04 S.55E-05 1.75E-05 5.55E-06 1.75E-06 5.55E-07
150 1.82E-04 574E-05 1.82E-05 5.74E-06 1.82E-06 5.74E-07
160 1.88E-04 593E-05 1.88E-05 5.93E-06 1.88E-06 5.93E-07
170 193E-04 6.12E-05 193E-05 6.12E-06 1.93E-06 6.12E-07
1.80 1.99E-04 6.20E-05 1.99E-05 6.29E-06 1.99E-06 6.29E-07
180 2.04E-04 6.47E-05 204E-05 6.47E-06 2.04E-06 647E-07
200 210E-04 6.63E-05 2.1E-05 6.63E-06 2.1E-06 6.63E-07

0.00005

——1ppb
! =i
0.00004 | —— 6)pm
—o— 10 ppm
£ 0.00003 |
2 I
3 0.00002 i
I
0.00001
0.00000 —
0.00 0.50 1.00 1.50 2.00

A9 (V)

Problem 18.8 The Mott-Schottky equation is given in equation (18.2.8) for a semiconductor at
298K.

1 141x10%

7 Np [~A¢ —0.0257) (18.2.8)
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where —A¢ = E — Ef. Or,

1 141x10%®
o = i [E — Epp — 0.0257] 1
o “Nn [ i ] (O]
A plot of ng versus E yields a slope of m = 1.41 x 10%°/eNp. The intercept on the potential
axis is [Eyp + 0.0257].

For the data in Figure 18.5.2 recorded at 2500 Hz, slope and intercepts for the p-type and n-type

data are as follows. The CRC Handbook gives the dielectric constant of InP as 12.4; this value was
used to calculate Np.

p-type n-type
slope (m*/F2V) —3.63x 10° 37.8 x 107
intercept E axis (V) 0.88 —.34
intercept/slope —0.83 0.32
Ep (V) 0.85 -0.37
eNp (em™%) 39x10%  3.7x10
Np (em=3) 31x10%  3.0x 108

From these values, the difference in the flatband potentials for the # and p-type semiconductors
is 1.22 V, which is slightly smaller than the band gap for the intrinsic InP of 1.3 V. The smaller

gapis t with doping the d For the intrinsic semiconductor, equation (18.2.1)
yields the doping level.
19 By -3 ©
n; = p;~25x10%exp o | o™ (near 25°C) (18.2.1)

14

—13eV
19 -3
25 x 107 exp [2 x 02560 eV] en

2.57 x 10% em™3

Zl

As expected, this is less than the carrier level found for the doped InP.
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A MATHEMATICAL METHODS

Problem A.1 The definition of the Laplace transform is provided by equation (A.1.8).

L{F@®)}

[ et-sn Fja “19)
0
7o)

The Laplace transform of sin at is found by evaluating the integral.
oo
L {sinat} = / exp {—st] sin at dt 1)
0

It is useful to note that

sinat = =P [iat] —2 :xp [—iat] @

L{sinat} = /-co exp [ st w dt [€))
0

1 [ 1 [~
= —_/ exp [—st] exp [iat] dt — —_/ exp [—st] exp [—iat] dt
2t Jo 2i Jfo

-2 mexp[—(s—ia)t]dt——%/owexp[v(sﬁ—ia)t] dt

2
_ lexp[-(s—ia) t]| 1exp[~(a+ia)t]|De 4
T2 —(s-ia) lo T2 Z(stia) L] @

In evaluating the upper limit of the integrations, it is noted that one requirement of the Laplace
transform is that the transformed function be of exponential order, which sin at is. (See page 770
in the text.) This means that there is a value of s where the argument of the integral in equation
(A.1.8) is damped as ¢ — oc. Thus, the upper limits of the functions in equation (4) are zero.

L{sinat} = 1( ,(sl,w)) 211( —(si—ia)) ®

x(emwem)
(=52)
(7

2ia
#1a) s ta? a2

W= R
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Alternatively, equation (1) can be integrated by parts where

/ udv = uwv —vdu 6)

Here, it does not matter which function is set to % and which to dv. Let

u = exp [~st] dv = sinat dt
du = —sexp |{—st] v = —cos[at] /a
Then,
oo —st) " o
/ exp [—st|sinat dt = _exp[=stcosatl i/ exp [~st] cos at dt @)
0 @ @ Jo
1 s ™
= ;(0~1)—;/0. exp [—st] cosat dt
1

5 [
- ___/ exp [—st] cos at dt
a Jo

a

Now, it is necessary to evaluate the integral on the right, again by parts. Let

u = exp [—si] dv = cosat dt
du = —sexp [—st] v =sinlat] /a

Then,

i . _ 1 s |exp[-st]sin[af] E/"" R
/0 exp [—st]sinat dt = . a{—a +a A exp[—st]sinat dt 3 (8)

s s e R
- X (0-0)— ﬁ/{, exp [—st]sinat dt

Sk

§2 [
-z / exp [—st]sinat dt
0

Note the integral on the right and left are the same. This is rearranged as

lo

%

exp [-st]sinat dt = —4— 9

| et e ®
s? +a?

This is consistent with the answer found by integration of the exponentials.
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Problem A3 The derivatives of sin at are as follows

F(t)y= gjn':_a =acosat w
Fi(t) = dq;;gat - adczat — —a?sinat @

Equation (A.1.14) is solved for s* f(s) as
82 f(s) = L{F"()} + sF(0) + F'(0) 3)

Substitution of equations (1) and (2) yields

Sfls) = L{—a’sinat} + ssin {0] + acos (0] )
= —a®L{sin at} +a

But, f(s) = L {sinat} and the above rearranges to

L{sinat} =

®)

a
s +a?

Problem A.5 (a). The Laplace transform of the problem is specified using equations (A.1.14)
and (A.1.13) as

sy(s) = sY(0) = Y'(0) + sy(s) - Y(0)= 0 O]
L{y"(t)} L{y'(®}
This rearranges to
(+9)y(s) - s+ DY) —Y'(0) =0 @

Substitution of the boundary conditions ¥ (0) = 5 and Y’(0) = —1 yields

(P+8)ys)=5(+1)—(~1) = 0 ®)
(52+3)y(s) —-5s—-4 = 0
Or,
5s 4
D) @
5 4
v = St e ®)
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The inverse is taken termwise. For the first term, the inverse is found in Table A.1.1.

S—i—; < exp[—at] ©)
So,

S < 5exp (1] @

sr1 0P )

The second term is not found directly in the Table. One option is to look in a more sophisticated
table of transforms such as F. Oberhettinger and L. Badii, Table of Laplace Transforms, Springer-
Verlag, New York, 1973, or even a general math table such as CRC Mathematical Tables from

CRC Press or M. Abramowitz and I.A. Stegun (eds.), Handbook of A ! Functions, Dover
Publications, New York. For example, the CRC Mathematical Tables report
I S— (exp[at] — exp [bt]) ®
a6 P P )
For the second term, b = 0 and @ = —1 such that
e e~ 1) 9
2+s P ©)

Alternatively, equation (A.1.17) can be used to find the inverse of the second term. Note that
4/ (s?+s) = (4/s)/(s+1). The inverse of (s+ 1)~ is given by equation (6). Equation
(A.1.17) provides the method.

L { /0 ‘ F(z)dz} =159 (AL17)
Thus,
! {%f(s)} =/ﬂtF(x)dz (10)
Or,
L“{%x;l_—l} = 4/:exp[—z]dz [¢8))
= —dexp{-z]
= —dfexp(-t)~1]

This is consistent with equation (9).
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The inverse of equation (5) is now speclﬁed

Y(t) Sexp[-t] - 4fexp(-t) - 1] 12

= exp[—t]+4

To verify that this is the correct solution,

Y'(t) = —exp[~] (13)
Y”(t) = exp [—t] (14)

such that
Y(t) +Y'(t) = exp [—t] — exp[—1] £ 0 s)

and Y(0) Z 5and Y'(0) £

Problem A.7 Taylor and Maclaurin series are useful for developing series approximations to
functions which can be differentiated. If the series are developed about a value of interest, then
good approximations about this value can be found for truncated series. Linear approximations are
sufficient for many purposes.

(a). The Taylor series for a single independent variable is defined by equation (A.2.6).

flz) = flwo) + Z i (& —zo) [Bxf fz) ] (A26)

=20

For a Taylor expansion of exp {az] about az = 1, let az = y. This yields

expll = 11+Z -1 [greetl] &

I
ly=1

= exv[1]+<y—1)exp[y]L +§(y*1)zeXP[y]L +%(yv1)3exp[y}

=1

=1

i

T D DE TR
=07

Thus, the linear approximation to the Taylor series abouty = az = 11is

exp [ax] = exp 1] [1 + (az — 1)] = azexp 1] @)
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(b). The Maclaurin series is defined in equation (A.2.7) and is appropriate for expansion about
z = 0. Itis a specific case of the Taylor expansion.

1@ =10 +3 57 [Zi@)] @27)
j=1

For a Maclaurin expansion of exp [az] about az = 1, let ax = y. This yields

It

ool = opl+ Z v [t ®

1+yexp[y]L +2y exp[ylL 3,y eXP[y]L oo

2 o
Lhy+ o+ go

Thus, the linear approximation to the Maclaurin series about y = az = 0 is

exploz] = 1+ax (&)

(c). Approximations that can be developed for the above Taylor and Maclaurin series would in-
volve the number of terms needed to give an approximation of appropriate accuracy. The linear
approximations would involve only the terms for j = 0 and j = 1. See equations (2) and (4). The
plots below for the linear Taylor and Maclaurin approximations (x) include the relative error (*) as
compared to the real value of exp [y} (solid dark line). In each case, the approximations are within
2% for yo + 0.2. A better approximation is found for 7 = 0 to j = 3. These approximations (O)
and their relative error (light solid line) are plotted as well. In both cases, the relative error is be-
low 2% for yg — 0.7 < y < yo+ 2.1. Note that the two approximations give the same relative error
about yg, as anticipated for Taylor series and Maclaurin series because the Maclaurin is a Taylor
developed about yp = 0.
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expy

00 1.000
0.1 1.105
02 1221
03 1.350
0.4 1.492
05 1.648
0.8 1.822
07 2014
08 2226
09  2.480
1.0 2718
11 3.004
12 3320
13  3.669
14  4.055
16 4482
16 4953
1.7 5474
1.8  6.050
19 6.686
20 7.389
21 8.166
22 9.025
23 9974
24 11.023
25 12182
28 13.464
27 14.880
28 16445
29 18174
3.0 20.088

25

20 H e

15
&

x Taylor, j=1

y1 app

40 0806
09 1042
08 1182
07 132
0.6 1479
05 1642
0.4 1.819
03 2013
0.2 2225
01 2460
00 2718
0.1 3.004
02 3320
03 3668
04 4052
05 4474
06 4936
07 5442
08 5995
09 659
10 7.249
11 7.95
12 8720
13 9544
14 10431
1.5 11.383
16 12403
1.7 13493
1.8 14.657
19 15.897
20 17216

j=
% rel er
9.39

5.87
3.26
1.76
0.88
0.39
0.15
0.04
0.01
0.00
0.00
0.00
0.01
0.03
0.08
0.18
0.34
0.58
0.91
135
1.90
257
3.38
4.31
5.37
8.56
7.88
9.32
10.87
12.53
14.29

app % rel er y
0.

000
0.272
0.544
0.815
1.087
1.359
1.631
1.903
2175
2446
2718
2.990
3.262
3.534

% rel error j=1

P

I
% rel er api
3 . 0.000

100.00 9.39

75.40 567 0100
55.49 326 0200
39.59 1.76  0.300
27.12 0.88 0.40C
17.56 038  0.500
10.49 015 0.600
5.51 0.04 0700
2.29 0.01 0.800
0.53 0.00  0.900
0.00 0.00  1.000
0.47 0.00 1.100
1.75 001  1.200
3.69 0.03  1.300
8.16 0.08  1.400
9.02 0.18  1.500
12.19 0.34  1.600
15.58 058 1700
19.12 0.91 1.800
22.75 135 1.900
26.42 1.80 2,000
30.10 257 2100
33.74 338 2200
37.32 431 2.300
40.82 537 2400
44.22 656 2500
47.51 7.88 2600
50.68 932 2700
53.72 1087  2.800
58.63 1253 2.900
59.40 14.29 3,000
20 8 20
7
o
15 - 6 rel error = CA4 15
g 5 V.
5 9
05 g4 S 10
® 3
5 2 > 5
1 50000}
0 0 Lo
-1 0o a4 2

141




3 DlGlMlﬁA 8\8% net

:LECTROCHEMICAL PROBLEMS

Problem B.1  Consider equation (B.1.19), which characterizes the current under mass transport
limited conditions.

. 1/2
ik + 1)t/

2+ = Fapace ®.1.19)
This can be re-expressed at time ¢ as
. nFADV2C*
Z(t)=Z(i)——t1/2— m
k

The Cottrell current arises following a potential step to the mass transport limit. It is given by
equation (5.2.11).

) FADY2C*
iat) = "—\/r_t—— (5.2.11)
Then, for the Cottrell current at time £,
i(t) nFADY2C* Vit
= gpEET YTk
walte) ® 07 nFADVEC- @
= Z{HVT
O, for a proportionality constant of 7~ /2,
i [
Z(t) =~ — 3
®) oV ©)

Problem B.3 Consider the current at time k1. The current expression for mass transport limited
electrolysis is defined by equation (B.1.17). The general expression is similar.

ik + 1) = RPADC" U,,A(xz,k) - f(2.K)]

o
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Charge generated during a time step At is g(k + 1) where

nFADC* [fa(2,k) — f2.K)] At
Az

gk +1) = i(k+ )AL= @

Given the dimensionless diffusion coefficient from equation (B.1.12), Dy = DAt/ Az?, substi-
tution for Az yields the following:

nFADC* [fa(2,k) — f(2.k)] AtvDy

q(k+1) /DAt 3)
= nFAVDC® [fA(2.k) — f(2.K)) VBEy/Dar
But, At = t;/¢
qlk + 1) = nFAVDC" [f4(2.K) — F2.R)] VEry /Dt @)

The usual process for defining a dimensionless parameter is to isolate all the dimensioned variables
from the dimensionless terms. Let Q(k + 1) be the dimensionless charge.

Qi +1) = et — (142 ) - S2R) VD] ®

From the units, Q(k + 1) is dimensionless. The charge, like the current, is calculated at the next
time (k+ 1) from the concentrations at the present time (k). From the discussion on page 792 in the
text, the appropriate time to assign to the charge is actually better represented as ¢/t = (k +0.5)/¢2
as opposed to £/t = (k-+1)/¢. In part, this compensates for the forward difference used to derive
the finite difference expression for the time derivative (see equation (B.1.6)).

Problem B.4 Consider the reaction sequence

A+e=B (at the electrode)
B+C¥D  (in solution)

The diffusion kinetic equation for species B is then a combination of Fick’s first law and the rate
of consumption for B in the following reaction.

8Cp(x,t 8°Cs(z,t
20se.1) . p,TED — kyCale, ) Colart) 6

This can be expressed in finite difference form based on equation (B.1.7) for the spatial second
derivative and on equation (B.1.3) for the forward difference of the temporal first derivative.

= D,

Cp(z,t + At) - Cp(z,t) Cplz + Az,t) — 2Cp(z,t) + Cplz — Az, 1)
At 5 Ad? @



www.Endbook:riet

Letz = jAz and t = kAt. Then the above equation is expressed in indices of j and & as follows:

Cp(j,k+1)—Cp(j,k) Cs(i+1,k) —2Cp(j,k} + Cp(j ~ 1,k)
— & "D Aq? ] @
—kyCp(j, kK)Cc (4, k)

Solving for Cp(j, k + 1)

Cg(j+1,k) —2CB(j, k j—~ 1,k
Calik+1) = Caik) + Dot [C2U LI “20R00 + CRU- L] - g
~kaAtCr(j, k)Co (5, k)
To fractional conc ions for B, normalize by the bulk concentration of B, C', such

that f5(j, k) = Cs(j, k)/C}. To make the concentration of C fractional, normalize by C¢; such
that fo(4,k) = Ce(d, k)/C.

f8(G+1,k)~2fp(j, k) + fp(j — 1,k)

falik+1) = fal0)+ Dot | 50, ©
—k2CE AL (5, k) fe (i, k)
Note that Day = DpAt/Az? and At = t; /4.
fe(j,k+1) = fp(j,k)+ Du [fp(J + LK) — 2fp(s,k) + fB(j — 1,k)] ©)

B2 5, o i)

= I+ 1) = 2 1) o

This yields an equation of the form of equations (B.3.11) and (B.1.12). The dimensionless rate
constant is kaCht /2.
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